Search Results
You are looking at 1 - 10 of 12 items for
- Author: K Yamada x
- Refine by access: All content x
Search for other papers by T. Sugisaki in
Google Scholar
PubMed
Search for other papers by T. Yamada in
Google Scholar
PubMed
Search for other papers by K. Takamatsu in
Google Scholar
PubMed
Search for other papers by T. Noguchi in
Google Scholar
PubMed
ABSTRACT
Serum insulin-like growth factor-I (IGF-I) levels in lit (isolated GH deficiency), dw (panhypopituitarism), hyt (hypothyroidism) and cog (congenital goiter) mutant mice were found to be significantly lower than in control mice. In addition, liver and kidney IGF-I concentrations in mutants were also found to be significantly reduced compared with controls. These differences in IGF-I concentration were not observed in pg (genetic IGF receptor or post-receptor defect?) mice. These results indicated that serum IGF-I production is induced by thyroid hormones as well as by GH. Western blot analysis of serum IGF-binding protein (IGFBP) fractions revealed the following differences among the five mutants: the triplet of IGFBP-3 (42, 45 and 49 kDa) and IGFBP-4 (24 kDa) levels were significantly reduced. IGFBP-2 (32 kDa) levels were also reduced in the lit, hyt and cog mice, although the level in serum of dw mice was found to be greatly elevated. No differences in serum IGFBP levels were found in the pg mouse. Consequently, the ratio of IGFBP-3%: IGFBP-2% (the percentage of IGFBP-3 fraction of total IGFBP (IGFBP-3%) divided by that of IGFBP-2 (IGFBP-2%)) was decreased in GH-deficient mice but increased in hypothyroid mice, suggesting that IGFBP-3 and IGFBP-2 production in the liver is induced by GH and thyroid hormones respectively.
Journal of Endocrinology (1993) 138, 467–477
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Search for other papers by J. Brtko in
Google Scholar
PubMed
Search for other papers by L. J. DeGroot in
Google Scholar
PubMed
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Search for other papers by T. Yamada in
Google Scholar
PubMed
ABSTRACT
Rat liver nuclear thyroid hormone receptor lost 3,5,3′-tri-iodo-l-thyronine (T3)-binding activity with a half-life of 14 days, 4 h, 139 min, 62 min, 16 min or 6 min at 0, 36, 38, 40, 43 or 45 °C respectively, when present in crude nuclear extracts. Glycerol increased the half-life of the receptor during heat inactivation. Protection was reversible by removing the glycerol. The receptor was unstable at a pH below 6·0 or above 10·0. We also found a loss of the receptor activity during the separation of bound and free hormone using the resin test. Of several conditions tested for the separation of bound and free hormone, the addition of heated nuclear extract gave the most accurate estimation of bound hormone when using the resin test. Using these characteristics of the receptor, we purified the receptor to 1220 pmol T3-binding capacity/mg protein with a final yield of 14·6 μg/4 kg rat liver.
Journal of Endocrinology (1989) 120, 237–243
Search for other papers by A. Sakurai in
Google Scholar
PubMed
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Search for other papers by T. Miyamoto in
Google Scholar
PubMed
Search for other papers by K. Yamauchi in
Google Scholar
PubMed
Search for other papers by H. Ohtsuka in
Google Scholar
PubMed
Search for other papers by Y. Nishii in
Google Scholar
PubMed
Search for other papers by T. Yamada in
Google Scholar
PubMed
ABSTRACT
The effects of histone subfractions on rat liver thyroid hormone receptor–DNA interaction were examined using an in-vitro DNA-cellulose binding assay. H1 histones bound to DNA showed reversible and potent inhibition of receptor–DNA binding without affecting receptor–hormone binding. Poly-lysine, bovine serum albumin, ovalbumin and cytochrome c did not alter receptor–DNA binding. H1 histone subfractions (calf thymus lysine-rich histone (CTL)-1, CTL-2 and CTL-3) showed potent inhibition of receptor–DNA binding indistinguishable from each other. The quantity of H1 histone subfractions bound to DNA was the same. Although each subfraction has different functional properties, inhibition of receptor–DNA binding was a common feature of all the H1 histone subfractions, which is important for the non-random distribution of the receptor in chromatin.
Binding of the receptor to core histones was investigated; it was found to bind to core histones more potently than to other proteins (H1 histone, ovalbumin and cytochrome c). Among core histone subfractions, H4 histone bound to the receptor most potently and is the candidate to be one of the acceptor sites of the receptor in chromatin.
Journal of Endocrinology (1989) 121, 337–341
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Search for other papers by T. Miyamoto in
Google Scholar
PubMed
Search for other papers by Y. Nishii in
Google Scholar
PubMed
Search for other papers by K. Yamauchi in
Google Scholar
PubMed
Search for other papers by H. Ohtsuka in
Google Scholar
PubMed
Search for other papers by T. Yamada in
Google Scholar
PubMed
ABSTRACT
An aqueous two-phase partitioning study of partially purified nuclear thyroid hormone receptor from rat liver was performed. Stability of 3,5,3′-tri-iodo-l-thyronine (T3)–receptor complex and T3-binding activity in the presence of dextran or polyethylene glycol were assessed in order to determine the amount of occupied or unoccupied receptors in each phase. Partition coefficients were calculated as the ratio of receptor concentration in the upper polyethylene glycol-rich phase H2O and that in the lower dextranrich phase H2O. The partition coefficient was a sensitive function of the salt at pH above 6·1 and below 5·1. The salt had no effect on the partition coefficient at pH around 5·6. These results suggest that the isoelectric point of the thyroid hormone receptor is about 5·6, confirming previous determinations using isoelectric focusing. The partition coefficient of the receptor decreased upon T3 binding, regardless of the salt composition. In contrast, the partition coefficient of thyroxine-binding globulin increased upon T3 binding. Free T3 preferentially partitioned into the upper polyethylene glycol-rich phase and gave a partition coefficient higher than 1·0. These results strongly suggest that the decrease in the partition coefficient of the receptor upon hormone binding reflects conformational changes or changes in electrostatic properties of the receptor upon hormone binding. Such an alteration may be involved in biological activation of the receptor upon hormone binding.
J. Endocr. (1988) 119, 431–437
Search for other papers by T Ishizuka in
Google Scholar
PubMed
Search for other papers by A Miura in
Google Scholar
PubMed
Search for other papers by K Kajita in
Google Scholar
PubMed
Search for other papers by K Yamada in
Google Scholar
PubMed
Search for other papers by H Wada in
Google Scholar
PubMed
Search for other papers by S Itaya in
Google Scholar
PubMed
Search for other papers by Y Kanoh in
Google Scholar
PubMed
Search for other papers by M Ishizawa in
Google Scholar
PubMed
Search for other papers by M Kimura in
Google Scholar
PubMed
Search for other papers by K Yasuda in
Google Scholar
PubMed
The Otsuka Long-Evans Tokushima fatty (OLETF) rat is a new spontaneous non-insulin-dependent diabetes mellitus (NIDDM) model rat strain developed in Tokushima, Japan. After 18 weeks of age, decreases of 45% and 40% respectively in insulin- and phorbol ester-stimulated [3H]2-deoxyglucose (DOG) uptake were observed, compared with those in Long-Evans Tokushima (LETO) rats (control). Insulin-specific binding and 95 kDa autophosphorylation of insulin receptor in OLETF rats were not different from those in LETO rats. Insulin-induced diacylglycerol (DG) production and Mono Q column-purified protein kinase C (PKC) translocation in adipocytes of OLETF rats were decreased compared with those of LETO rats. Insulin-induced PKC beta translocation from cytosol to membrane was also decreased in adipocytes of OLETF rats. Increases of the PKC beta I, beta II, epsilon and zeta isoforms in membranes of OLETF rats were markedly smaller than those of LETO rats. Analysis of mRNA levels of PKC isoforms in adipocytes of OLETF rats showed decreases of basal level and insulin-induced delayed responses of PKC beta I, beta II, epsilon and zeta mRNA in OLETF rats. On the other hand, insulin- or phorbol ester-induced phosphatidylinositol 3-kinase (PI 3-kinase) activation was decreased in adipocytes of OLETF rats compared with those of LETO rats. These results suggest that insulin resistance in OLETF rats, a spontaneous NIDDM model rat, may be associated with deterioration of insulin-induced DG-PKC signaling and subsequent decrease in PI 3-kinase activation.
Search for other papers by Y. Nishii in
Google Scholar
PubMed
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Search for other papers by T. Miyamoto in
Google Scholar
PubMed
Search for other papers by S. Suzuki in
Google Scholar
PubMed
Search for other papers by T. Takeda in
Google Scholar
PubMed
Search for other papers by K. Yamauchi in
Google Scholar
PubMed
Search for other papers by M. Kobayashi in
Google Scholar
PubMed
Search for other papers by T. Yamada in
Google Scholar
PubMed
ABSTRACT
Changes in the amount of cytosolic 3,5,3′-tri-iodo-l-thyronine (T3)-binding protein (CTBP) and its activator during administration of l-thyroxine (T4) to thyroidectomized rats were investigated. Thyroidectomy decreased the amount of CTBP in the kidney, whereas the activator was not significantly modified by thyroidectomy. The activator was increased by administration of T4 to thyroidectomized rats. The amount of CTBP was also increased by administration of T4. The activator increased the maximal binding capacity (MBC) without changes in the affinity constant for T3 binding in CTBP. A T4-induced increase in MBC in cytosol inhibited nuclear T3 binding in vitro by competition of T3 binding between CTBP and the nuclear receptor.
These results suggest that thyroid hormone increases the capacity for cytosolic T3 binding through increasing the amount of CTBP and its activator, and that these increases play a role in regulating the amount of T3 that binds to its nuclear receptor.
Journal of Endocrinology (1989) 123, 99–104
Search for other papers by T Usui in
Google Scholar
PubMed
Search for other papers by Y Ikeda in
Google Scholar
PubMed
Search for other papers by T Tagami in
Google Scholar
PubMed
Search for other papers by K Matsuda in
Google Scholar
PubMed
Search for other papers by K Moriyama in
Google Scholar
PubMed
Search for other papers by K Yamada in
Google Scholar
PubMed
Search for other papers by H Kuzuya in
Google Scholar
PubMed
Search for other papers by S Kohno in
Google Scholar
PubMed
Search for other papers by A Shimatsu in
Google Scholar
PubMed
Some plant compounds or herb mixtures are popular alternatives to conventional therapies and contain organic compounds that bind to some nuclear receptors, such as the estrogen receptor (ER), to exert various biological effects. We studied the effect of various herbal extracts on ERalpha and ERbeta isoforms. One herbal extract, Rhei rhizoma (rhubarb), acts as an agonist to both ERalpha and ERbeta. The phytochemical lindleyin, a major component of rhubarb, might contribute to this estrogenic activity through ERalpha and ERbeta. 4-Hydroxytamoxifen, an ER antagonist, completely reversed the estrogenic activity of lindleyin. Lindleyin binds to ERalpha in vitro, as demonstrated using a fluorescent polarization assay. The in vivo effect of rhubarb extract was studied using a vitellogenin assay system in the freshwater fish, Japanese medaka (Oryzias latipes). There were marked increases in serum vitellogenin levels in male medaka exposed to rhubarb extract. We conclude that lindleyin, a component of some herbal medicines, is a novel phytoestrogen and might trigger many of the biological responses evoked by the physiological estrogens.
Search for other papers by K. Tamura in
Google Scholar
PubMed
Search for other papers by M. Kobayashi in
Google Scholar
PubMed
Search for other papers by S. Suzuki in
Google Scholar
PubMed
Search for other papers by Y. Ishii in
Google Scholar
PubMed
Search for other papers by S. Koyama in
Google Scholar
PubMed
Search for other papers by H. Yamada in
Google Scholar
PubMed
Search for other papers by K. Hashimoto in
Google Scholar
PubMed
Search for other papers by M. Niwa in
Google Scholar
PubMed
Search for other papers by F. Shibayama in
Google Scholar
PubMed
ABSTRACT
Monoclonal antibodies (McAb) and polyclonal antibodies (PcAb) against human insulin-like growth factor-I (somatomedin C; hIGF-I) were produced. Using these two antibodies, an enzyme-linked immunosorbent assay (ELISA) system for hIGF-I was established. The ELISA system was able to detect hIGF-I at a range of 1–25 μg/l, compared with the range of 1–50 μg/l detected by radioimmunoassay (RIA). Human IGF-II and human insulin could not be recognized in this system. The plasma concentrations of IGF-I found using the ELISA agreed well with those found using RIA after conventional Sep-Pak C18 cartridge pretreatment. Epitopes of hIGF-I to McAb and PcAb were investigated by enzymatic digestion of hIGF-I followed by comparing the affinity of the antibodies to the peptides obtained proteolytically. The epitope to McAb was found to be a peptide containing Leu10-Val11-Asp12 (epitope 2). Five epitopes to PcAb containing the following key fragments were identified: a conformational structure formed by the disulphide bonds between Cys6 and Cys48, and between Cys47 and Cys52 (epitope 1), Leu10-Val11-Asp12 (epitope 2), Val17-Cys18-Gly19-Asp20 (epitope 3), Arg21-Gly22-Phe23-Tyr24 (epitope 4) and Lys68-Ser69-Ala70 (epitope 5). Of these, the peptide containing epitope 5 showed the highest affinity to PcAb. The results indicated that our ELISA system combined recognition by epitope 2 of McAb and recognition by epitope 5 of PcAb to obtain its good specificity.
Journal of Endocrinology (1990) 125, 327–335
Search for other papers by S Yamada in
Google Scholar
PubMed
Search for other papers by M Komatsu in
Google Scholar
PubMed
Search for other papers by T Aizawa in
Google Scholar
PubMed
Search for other papers by Y Sato in
Google Scholar
PubMed
Search for other papers by H Yajima in
Google Scholar
PubMed
Search for other papers by T Yada in
Google Scholar
PubMed
Search for other papers by S Hashiguchi in
Google Scholar
PubMed
Search for other papers by K Yamauchi in
Google Scholar
PubMed
Search for other papers by K Hashizume in
Google Scholar
PubMed
When isolated rat pancreatic islets are treated with 16.7 mM glucose, a time-dependent potentiation (TDP) of insulin release occurs that can be detected by subsequent treatment with 50 mM KCl. It has been thought that TDP by glucose is a Ca2+-dependent phenomenon and only occurs when exposure to glucose is carried out in the presence of Ca2+. In contrast to this, we now demonstrate TDP under stringent Ca2+-free conditions (Ca2+-free buffer containing 1 mM EGTA). In fact, under these Ca2+-free conditions glucose caused an even stronger TDP than in the presence of Ca2+. TDP induced by glucose in the absence of extracellular Ca2+ was unaffected by inhibitors of protein kinase C (PKC). However, cerulenin or tunicamycin, two inhibitors of protein acylation, eradicated TDP without affecting glucose metabolism. The TDP by glucose was not associated with an increase in the cytosolic free Ca2+ concentration ([Ca2+]i) during subsequent treatment with high K+. Exposure of islets to forskolin under Ca(2+)-free conditions did not cause TDP despite a large increase in the cellular cAMP levels. In conclusion, glucose alone induces TDP under stringent Ca2+-free conditions when [Ca2+]i was significantly lowered. Protein acylation is implicated in the underlying mechanism of TDP.
Search for other papers by I Sekiya in
Google Scholar
PubMed
Search for other papers by P Koopman in
Google Scholar
PubMed
Search for other papers by K Tsuji in
Google Scholar
PubMed
Search for other papers by S Mertin in
Google Scholar
PubMed
Search for other papers by V Harley in
Google Scholar
PubMed
Search for other papers by Y Yamada in
Google Scholar
PubMed
Search for other papers by K Shinomiya in
Google Scholar
PubMed
Search for other papers by A Nifuji in
Google Scholar
PubMed
Search for other papers by M Noda in
Google Scholar
PubMed
SOX9 is a transcription factor that activates type II procollagen (Col2a1) gene expression during chondrocyte differentiation. Glucocorticoids are also known to promote chondrocyte differentiation via unknown molecular mechanisms. We therefore investigated the effects of a synthetic glucocorticoid, dexamethasone (DEX), on Sox9 gene expression in chondrocytes prepared from rib cartilage of newborn mice. Sox9 mRNA was expressed at high levels in these chondrocytes. Treatment with DEX enhanced Sox9 mRNA expression within 24 h and this effect was observed at least up to 48 h. The effect of DEX was dose dependent, starting at 0.1 nM and maximal at 10 nM. The half life of Sox9 mRNA was approximately 45 min in the presence or absence of DEX. Western blot analysis revealed that DEX also enhanced the levels of SOX9 protein expression. Treatment with DEX enhanced Col2a1 mRNA expression in these chondrocytes and furthermore, DEX enhanced the activity of Col2-CAT (chloramphenicol acetyltransferase) construct containing a 1.6 kb intron fragment where chondrocyte-specific Sry/Sox- consensus sequence is located. The enhancing effect of DEX was specific to SOX9, as DEX did not alter the levels of Sox6 mRNA expression. These data suggest that DEX promotes chondrocyte differentiation through enhancement of SOX9.