Search Results
You are looking at 1 - 2 of 2 items for
- Author: KB Jonsson x
- Refine by access: All content x
Search for other papers by NO Vidal in
Google Scholar
PubMed
Search for other papers by H Brandstrom in
Google Scholar
PubMed
Search for other papers by KB Jonsson in
Google Scholar
PubMed
Search for other papers by C Ohlsson in
Google Scholar
PubMed
Osteoprotegerin (OPG) is a recently cloned member of the tumour necrosis factor receptor family. It has been suggested that this secreted glycoprotein acts as an inhibitor of osteoclastic differentiation. Expression of OPG has previously been demonstrated in a number of tissues. However, it is still unclear whether or not OPG is expressed by human osteoblasts. We have used the RNase protection assay to demonstrate the OPG transcript in primary cultured human osteoblast-like cells, human marrow stroma cells and osteosarcoma cell lines. Furthermore, we have studied the effect of glucocorticoids on OPG mRNA levels in these cells. We demonstrate that glucocorticoids decrease the OPG transcript in a dose- and time-dependent manner. The time-course study reveals that hydrocortisone (10(-6) M) decreases OPG mRNA levels within 2 h. This decrease is transient, reaching control levels again after 24 h. Our findings demonstrate that human osteoblasts express the mRNA corresponding to OPG, an inhibitor of osteoclast differentiation. The finding that OPG mRNA levels are decreased by glucocorticoids indicates that a reduced production of OPG from osteoblasts and/or marrow stroma cells could, in part, explain glucocorticoid-induced bone resorption.
Search for other papers by KB Jonsson in
Google Scholar
PubMed
Search for other papers by M Mannstadt in
Google Scholar
PubMed
Search for other papers by A Miyauchi in
Google Scholar
PubMed
Search for other papers by IM Yang in
Google Scholar
PubMed
Search for other papers by G Stein in
Google Scholar
PubMed
Search for other papers by O Ljunggren in
Google Scholar
PubMed
Search for other papers by H Juppner in
Google Scholar
PubMed
In oncogenic osteomalacia (OOM), a tumor produces an unknown substance that inhibits phosphate reabsorption in the proximal tubules. This causes urinary phosphate wasting and, as a consequence, hypophosphatemic osteomalacia. To characterize this poorly understood biological tumor activity we generated aqueous extracts from several OOM tumors. Extracts from three of four tumors inhibited, dose- and time-dependently, (32)P-orthophosphate uptake by opossum kidney (OK) cells; maximum inhibition was about 45% of untreated control. Further characterization revealed that the factor is resistant to heat and several proteases, and that it has a low molecular weight. The tumor extracts also stimulated cAMP accumulation in OK cells, but not in osteoblastic ROS 17/2.8 and UMR106 cells, or in LLC-PK1 kidney cells expressing the parathyroid hormone (PTH)/PTH-related peptide receptor or the PTH-2 receptor. HPLC separation of low molecular weight fractions of the tumor extracts revealed that the flow-through of all three positive tumor extracts inhibited (32)P uptake and stimulated cAMP accumulation in OK cells. Additionally, a second peak with inhibitory activity on phosphate transport, but without cAMP stimulatory activity, was identified in the most potent tumor extract. We have concluded that several low molecular weight molecules with the ability to inhibit phosphate transport in OK cells can be found in extracts from OOM tumors. It remains uncertain, however, whether these are related to the long-sought phosphaturic factor responsible for the phosphate wasting seen in OOM patients.