Search Results

You are looking at 1 - 2 of 2 items for

  • Author: KY Arai x
Clear All Modify Search
Free access

K Ohshima, H Kishi, M Itoh, KY Arai, G Watanabe, K Arai, K Uehara, NP Groome and K Taya

The changes in plasma concentrations of inhibins A, B and pro-alpha C were determined in the cyclic golden hamster during follicular atresia induced with antiserum against luteinizing hormone releasing hormone (LHRH-AS) at 1100 h on day 4 (day 1=day of ovulation). Follicular status in the ovary was also studied by determining the number of follicles ovulating in response to human chorionic gonadotrophin (hCG) injection. The time-courses of changes in plasma concentrations of inhibins A, B and pro-alpha C were different from each other during induced follicular atresia and subsequent follicular development. Plasma concentrations of inhibin A decreased to 58.6% of initial values by 24 h after LHRH-AS treatment, and then remained relatively low until at least 60 h later. Plasma concentrations of inhibin B decreased to 64.2% of the initial values by 18 h after LHRH-AS treatment and remained at basal values for 36 h, but increased abruptly to greater than initial values at 42 h after the treatment. Plasma concentrations of inhibin pro-alpha C increased at 6 and 12 h, decreased suddenly to 21.9% of the initial values by 24 h after LHRH-AS treatment, and then gradually increased until 60 h after LHRH-AS. The number of follicles responding to hCG decreased gradually between 0 and 30 h after LHRH-AS, when no ovulations were observed, and then gradually increased until 60 h. The changes in follicular ovulatory responses to hCG correlated with the plasma profile of inhibin A throughout the experiment. These results suggest that inhibin A is mainly secreted by large antral follicles. In contrast, during the subsequent follicular development, the plasma concentration of inhibin B increased earlier than that of inhibin A. These results suggest that inhibin B is secreted by small and large antral follicles. Plasma concentrations of inhibin pro-alpha C were high at a time when plasma concentrations of oestradiol-17 beta had already decreased, indicating that inhibin pro-alpha C is secreted not only from healthy follicles but also from early atretic antral follicles.

Free access

K Ohshima, K Ohshima, KY Arai, H Kishi, M Itoh, G Watanabe, PF Terranova, K Arai, K Uehara, NP Groome and K Taya

Numerous antral follicles develop during the second half of pregnancy in the golden hamster. However, mechanisms regulating follicular development during this period are unknown. Because inhibin and activin are related to follicular development, these hormones were studied to gain insight into any potential roles in follicular development. Plasma inhibin A and B suddenly increased from day 8 of pregnancy, reached peak levels on day 10 and gradually declined to term. Plasma activin A gradually increased from day 8 to day 15 of pregnancy, and this was followed by an abrupt decrease at day one of lactation. Ovariectomy on day 12 of pregnancy rapidly reduced plasma inhibin A and B, but not activin A levels. Hysterectomy or placentectomy on day 12 of pregnancy caused an abrupt decrease in the levels of plasma activin A and FSH, but not inhibin A and B at 6 h after surgery. Hysterectomy also induced atresia of large antral follicles at 24 h after surgery. These results indicate that antral follicles are the main source of circulating inhibin A and B, whereas uteri and placentae are the main source of circulating activin A. These results suggest that increased levels of activin A may be involved in folliculogenesis in the ovary during the second half of pregnancy in the golden hamster.