Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Lei Sun x
Clear All Modify Search
Free access

Hong-Hui Wang, Qian Cui, Teng Zhang, Lei Guo, Ming-Zhe Dong, Yi Hou, Zhen-Bo Wang, Wei Shen, Jun-Yu Ma and Qing-Yuan Sun

As a fat storage organ, adipose tissue is distributed widely all over the body and is important for energy supply, body temperature maintenance, organ protection, immune regulation and so on. In humans, both underweight and overweight women find it hard to become pregnant, which suggests that appropriate fat storage can guarantee the female reproductive capacity. In fact, a large mass of adipose tissue distributes around the reproductive system both in the male and female. However, the functions of ovary fat pad (the nearest adipose tissue to ovary) are not known. In our study, we found that the ovary fat pad-removed female mice showed decreased fertility and less ovulated mature eggs. We further identified that only a small proportion of follicles developed to antral follicle, and many follicles were blocked at the secondary follicle stage. The overall secretion levels of estrogen and FSH were lower in the whole estrus cycle (especially at proestrus); however, the LH level was higher in ovary fat pad-removed mice than that in control groups. Moreover, the estrus cycle of ovary fat pad-removed mice showed significant disorder. Besides, the expression of FSH receptor decreased, but the LH receptor increased in ovary fat pad-removed mice. These results suggest that ovary fat pad is important for mouse reproduction.

Restricted access

Dong-Xu Han, Chang-Jiang Wang, Xu-Lei Sun, Jian-Bo Liu, Hao Jiang, Yan Gao, Cheng-Zhen Chen, Bao Yuan and Jia-Bao Zhang

Circular RNAs (circRNAs) are a new class of RNA that have a stable structure characterized by covalently closed circular molecules and are involved in invasive pituitary adenomas and recurrent clinically nonfunctioning pituitary adenomas. However, information on circRNAs in the normal pituitary, especially in rats, is limited. In this study, we identified 4123 circRNAs in the immature (D15) and mature (D120) rat anterior pituitary using the Illumina platform, and 32 differentially expressed circRNAs were found. A total of 150 Gene Ontology terms were significantly enriched, and 16 KEGG pathways were found to contain differentially expressed genes. Moreover, we randomly selected eight highly expressed circRNAs and detected their relative expression levels in the mature and immature rat pituitary by qPCR. In addition, we predicted 90 interactions between 53 circRNAs and 57 miRNAs using miRanda. Notably, circ_0000964 and circ_0001303 are potential miRNA sponges that may regulate the Fshb gene. The expression profile of circRNAs in the immature and mature rat anterior pituitary may provide more information about the roles of circRNAs in the development and reproduction in mammals.

Open access

Shisan Xu, Fangjing Xie, Li Tian, Samane Fallah, Fatemeh Babaei, Sinai HC Manno, Francis A. M. Manno III, Lina Zhu, Kin Fung Wong, Yimin Liang, Rajkumar Ramalingam, Lei Sun, Xin Wang, Rorbert Plumb, Lee Gethings, Yun Wah Lam and Skuk Han Cheng

Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.