Search Results
You are looking at 1 - 6 of 6 items for
- Author: Lei Ye x
- Refine by access: All content x
Search for other papers by Feng Ye in
Google Scholar
PubMed
Search for other papers by Bingyin Shi in
Google Scholar
PubMed
Search for other papers by Xiaoyan Wu in
Google Scholar
PubMed
Search for other papers by Peng Hou in
Google Scholar
PubMed
Search for other papers by Lei Gao in
Google Scholar
PubMed
Search for other papers by Xiaodan Ma in
Google Scholar
PubMed
Search for other papers by Li Xu in
Google Scholar
PubMed
Search for other papers by Liping Wu in
Google Scholar
PubMed
CD40 plays an important role in the pathogenesis of Graves' disease (GD). Inhibition of CD40 expression may be a promising treatment for GD. In this study, we used an animal model to investigate whether lentivirus expressing siRNA for CD40 (LV-CD40-siRNA) could be useful for the therapy of GD. BALB/c mice were injected with PBS alone (PBS group), negative lentivirus (control siRNA group), or LV-CD40-siRNA (CD40 siRNA group), 3 days before being treated with adenovirus expressing human TSHR A subunit (Ad-TSHR289) three times at 3-week intervals to induce GD model. Sera thyroxine (T4) levels were assayed by RIA. The expression of CD40 was detected at the mRNA level by real-time PCR and protein level by flow cytometry. The expression of CD40, CD80, and CD86 was significantly decreased in the CD40 siRNA group (P<0.05), while FOXP3 expression was increased compared to the control siRNA group (P=0.05). Mean T4 levels were decreased 14% in the CD40 siRNA group compared to the control siRNA group. The rate of disease induction was similar among the three groups injected with Ad-TSHR289. LV-CD40-siRNA is a useful tool to inhibit the expression of CD40 in vivo, but it cannot decrease the incidence of hyperthyroidism in a limited period of time.
Search for other papers by Lei Li in
Google Scholar
PubMed
Search for other papers by Ping Ma in
Google Scholar
PubMed
Search for other papers by Chen Huang in
Google Scholar
PubMed
Search for other papers by Yongjun Liu in
Google Scholar
PubMed
Search for other papers by Ye Zhang in
Google Scholar
PubMed
Search for other papers by Chen Gao in
Google Scholar
PubMed
Search for other papers by Tianxia Xiao in
Google Scholar
PubMed
Search for other papers by Pei-Gen Ren in
Google Scholar
PubMed
Search for other papers by Brian A Zabel in
Google Scholar
PubMed
Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Search for other papers by Jian V Zhang in
Google Scholar
PubMed
The novel adipokine chemerin plays a role in the regulation of lipid and carbohydrate metabolism, and recent reports of elevated chemerin levels in polycystic ovarian syndrome and preeclampsia have pointed to an emerging role of chemerin in reproduction. We hypothesised that chemerin, like other adipokines, may function to regulate male gonadal steroidogenesis. In this study, we show that chemerin and its three receptors chemokine-like receptor 1 (CMKLR1), G-protein-coupled receptor 1 (GPR1) and chemokine (C-C motif) receptor-like 2 were expressed in male reproductive tracts, liver and white adipose tissue. CMKLR1 and GPR1 proteins were localised specifically in the Leydig cells of human and rat testes by immunohistochemistry. The expression of chemerin and its receptors in rat testes was developmentally regulated and highly expressed in Leydig cells. In vitro treatment with chemerin suppressed the human chorionic gonadotropin (hCG)-induced testosterone production from primary Leydig cells, which was accompanied by the inhibition of 3β-hydroxysteroid dehydrogenase gene and protein expression. The hCG-activated p44/42 MAPK (Erk1/2) pathway in Leydig cells was also inhibited by chemerin cotreatment. Together, these data suggest that chemerin is a novel regulator of male gonadal steroidogenesis.
Search for other papers by Ya Liu in
Google Scholar
PubMed
Search for other papers by Xiaoqing Zhou in
Google Scholar
PubMed
Search for other papers by Ye Xiao in
Google Scholar
PubMed
Search for other papers by Changjun Li in
Google Scholar
PubMed
Search for other papers by Yan Huang in
Google Scholar
PubMed
Search for other papers by Qi Guo in
Google Scholar
PubMed
Search for other papers by Tian Su in
Google Scholar
PubMed
Search for other papers by Lei Fu in
Google Scholar
PubMed
Search for other papers by Liping Luo in
Google Scholar
PubMed
Nonalcoholic fatty liver disease (NAFLD) is becoming the most prevalent liver disease worldwide, is characterized by liver steatosis and is often accompanied with other pathological features such as insulin resistance. However, the underlying mechanisms are not fully understood, and specific pharmacological agents need to be developed. Here, we investigated the role of microRNA-188 (miR-188) as a negative regulator in hepatic glucose and lipid metabolism. miR-188 was upregulated in the liver of obese mice. Loss of miR-188 alleviated diet-induced hepatosteatosis and insulin resistance. In contrast, liver-specific overexpression of miR-188 aggravated hepatic steatosis and insulin resistance during high-fat diet feeding. Mechanistically, we found that the negative effects of miR-188 on lipid and glucose metabolism were mediated by the autophagy pathway via targeting autophagy-related gene 12 (Atg12). Furthermore, suppressing miR-188 in the liver of obese mice improved liver steatosis and insulin resistance. Taken together, our findings reveal a new regulatory role of miR-188 in glucose and lipid metabolism through the autophagy pathway, and provide a therapeutic insight for NAFLD.
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Lei Ye in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Xiaoying Li in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Xiangyin Kong in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Weiqing Wang in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Yufang Bi in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Landian Hu in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Bin Cui in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Xi Li in
Google Scholar
PubMed
Health Science Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, People’s Republic of China
Search for other papers by Guang Ning in
Google Scholar
PubMed
The ectopic ACTH syndrome is caused by abnormal expression of the POMC gene product arising from non-pituitary tumors in response to the ectopic activation of the pituitary-specific promoter of this gene. It has been proved that methylation of the CpG island in the promoter region is associated with silencing of some genes. Using bisulphite sequencing, we identified hypermethylation in the 5′ promoter region of the POMC gene in three normal thymuses and one large cell lung cancer, and hypomethylation in five thymic carcinoid tumors resected from patients with ectopic ACTH syndrome. The region undergoing hypermethylation was narrowed to coordinates −417 to −260 of the POMC promoter. Furthermore, we observed that the levels of POMC expression correlated with the methylation density at −417 to −260 bp across the E2 transcription factor binding region of the POMC promoter. It is concluded that hypomethylation of the POMC promoter in thymic carcinoids correlates with POMC overexpression and the ectopic ACTH syndrome.
Search for other papers by Ziping Jiang in
Google Scholar
PubMed
Search for other papers by Junduo Wu in
Google Scholar
PubMed
Search for other papers by Fuzhe Ma in
Google Scholar
PubMed
Search for other papers by Jun Jiang in
Google Scholar
PubMed
Search for other papers by Linlin Xu in
Google Scholar
PubMed
Search for other papers by Lei Du in
Google Scholar
PubMed
Search for other papers by Wenlin Huang in
Google Scholar
PubMed
Search for other papers by Zhaohui Wang in
Google Scholar
PubMed
Search for other papers by Ye Jia in
Google Scholar
PubMed
Search for other papers by Laijin Lu in
Google Scholar
PubMed
Search for other papers by Hao Wu in
Google Scholar
PubMed
Over a half of the diabetic individuals develop macrovascular complications that cause high mortality. Oxidative stress (OS) promotes endothelial dysfunction (ED) which is a critical early step toward diabetic macrovascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system and combats diabetes-induced OS. Previously, we found that impaired NRF2 antioxidant signaling contributed to diabetes-induced endothelial OS and dysfunction in mice. The present study has investigated the effect of microRNA-200a (miR-200a) on NRF2 signaling and diabetic ED. In aortic endothelial cells (ECs) isolated from C57BL/6 wild-type (WT) mice, high glucose (HG) reduced miR-200a levels and increased the expression of kelch-like ECH-associated protein 1 (Keap1) – a target of miR-200a and a negative regulator of NRF2. This led to the inactivation of NRF2 signaling and exacerbation of OS and inflammation. miR-200a mimic (miR-200a-M) or inhibitor modulated KEAP1/NRF2 antioxidant signaling and manipulated OS and inflammation under HG conditions. These effects were completely abolished by knockdown of Keap1, indicating that Keap1 mRNA is a major target of miR-200a. Moreover, the protective effect of miR-200a-M was completely abrogated in aortic ECs isolated from C57BL/6 Nrf2 knockout (KO) mice, demonstrating that NRF2 is required for miR-200a’s actions. In vivo, miR-200a-M inhibited aortic Keap1 expression, activated NRF2 signaling, and attenuated hyperglycemia-induced OS, inflammation and ED in the WT, but not Nrf2 KO, mice. Therefore, the present study has uncovered miR-200a/KEAP1/NRF2 signaling that controls aortic endothelial antioxidant capacity, which protects against diabetic ED.
Search for other papers by Qinglei Yin in
Google Scholar
PubMed
Search for other papers by Liyun Shen in
Google Scholar
PubMed
Search for other papers by Yicheng Qi in
Google Scholar
PubMed
Search for other papers by Dalong Song in
Google Scholar
PubMed
Search for other papers by Lei Ye in
Google Scholar
PubMed
Search for other papers by Ying Peng in
Google Scholar
PubMed
Search for other papers by Yanqiu Wang in
Google Scholar
PubMed
Search for other papers by Zhou Jin in
Google Scholar
PubMed
Search for other papers by Guang Ning in
Google Scholar
PubMed
Search for other papers by Weiqing Wang in
Google Scholar
PubMed
Search for other papers by Dongping Lin in
Google Scholar
PubMed
Search for other papers by Shu Wang in
Google Scholar
PubMed
SIRT1, a class III histone/protein deacetylase (HDAC), has been associated with autoimmune diseases. There is a paucity of data about the role of SIRT1 in Graves’ disease. The aim of this study was to investigate the role of SIRT1 in the pathogenesis of GD. Here, we showed that SIRT1 expression and activity were significantly decreased in GD patients compared with healthy controls. The NF-κB pathway was activated in the peripheral blood of GD patients. The reduced SIRT1 levels correlated strongly with clinical parameters. In euthyroid patients, SIRT1 expression was markedly upregulated and NF-κB downstream target gene expression was significantly reduced. SIRT1 inhibited the NF-κB pathway activity by deacetylating P65. These results demonstrate that reduced SIRT1 expression and activity contribute to the activation of the NF-κB pathway and may be involved in the pathogenesis of GD.