Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Lei Zhang x
  • Refine by access: All content x
Clear All Modify Search
Li Zhang State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, People’s Republic of China

Search for other papers by Li Zhang in
Google Scholar
PubMed
Close
,
XiaoXin Zhang State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Search for other papers by XiaoXin Zhang in
Google Scholar
PubMed
Close
,
Xuejing Zhang State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, People’s Republic of China

Search for other papers by Xuejing Zhang in
Google Scholar
PubMed
Close
,
Yu Lu State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, People’s Republic of China

Search for other papers by Yu Lu in
Google Scholar
PubMed
Close
,
Lei Li State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Search for other papers by Lei Li in
Google Scholar
PubMed
Close
, and
Sheng Cui State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, People’s Republic of China

Search for other papers by Sheng Cui in
Google Scholar
PubMed
Close

MicroRNAs (MiRNAs) play important regulatory roles in many cellular processes. MiR-143 is highly enriched in the mouse ovary, but its roles and underlying mechanisms are not well understood. In the current study, we show that miR-143 is located in granulosa cells of primary, secondary and antral follicles. To explore the specific functions of miR-143, we transfected miR-143 inhibitor into primary cultured granulosa cells to study the loss of function of miR-143 and the results showed that miR-143 silencing significantly increased estradiol production and steroidogenesis-related gene expression. Moreover, our in vivo and in vitro studies showed that follicular stimulating hormone (FSH) significantly decreased miR-143 expression. This function of miR-143 is accomplished by its binding to the 3’-UTR of KRAS mRNA. Furthermore, our results demonstrated that miR-143 acts as a negative regulating molecule mediating the signaling pathway of FSH and affecting estradiol production by targeting KRAS. MiR-143 also negatively acts in regulating granulosa cells proliferation and cell cycle-related genes expression. These findings indicate that miR-143 plays vital roles in FSH-induced estradiol production and granulosa cell proliferation, providing a novel mechanism that involves miRNA in regulating granulosa cell functions.

Free access
Lei Zhang School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Lei Zhang in
Google Scholar
PubMed
Close
,
Carol Paddon School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Carol Paddon in
Google Scholar
PubMed
Close
,
Mark D Lewis School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Mark D Lewis in
Google Scholar
PubMed
Close
,
Fiona Grennan-Jones School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Fiona Grennan-Jones in
Google Scholar
PubMed
Close
, and
Marian Ludgate School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Marian Ludgate in
Google Scholar
PubMed
Close

Since TSH receptor (TSHR) expression increases during adipogenesis and signals via cAMP/phospho-cAMP-response element binding protein (CREB), reported to be necessary and sufficient for adipogenesis, we hypothesised that TSHR activation would induce preadipocyte differentiation. Retroviral vectors introduced constitutively active TSHR (TSHR*) into 3T3L1 preadipocytes; despite increased cAMP (RIA) and phospho-CREB (western blot) there was no spontaneous adipogenesis (assessed morphologically, using oil red O and QPCR measurement of adipogenesis markers). We speculated that Gβγ signalling may be inhibitory but failed to induce adipogenesis using activated Gsα (gsp*). Inhibition of phosphodiesterases did not promote adipogenesis in TSHR* or gsp* populations. Furthermore, differentiation induced by adipogenic medium with pioglitazone was reduced in TSHR* and abolished in gsp* expressing 3T3L1 cells. TSHR* and gsp* did not inactivate PPARγ (PPARG as listed in the HUGO database) by phosphorylation but expression of PPARγ1 was reduced and PPARγ2 undetectable in gsp*. FOXO1 phosphorylation (required to inactivate this repressor of adipogenesis) was lowest in gsp* despite the activation of AKT by phosphorylation. PROF is a mediator that facilitates FOXO1 phosphorylation by phospho-Akt. Its transcript levels remained constantly low in the gsp* population. In most measurements, the TSHR* cells were between the gsp* and control 3T3L1 preadipocytes. The enhanced down-regulation of PREF1 (adipogenesis inhibitor) permits retention of some adipogenic potential in the TSHR* population. We conclude that Gsα signalling impedes FOXO1 phosphorylation and thus inhibits PPARγ transcription and the alternative promoter usage required to generate PPARγ2, the fat-specific transcription factor necessary for adipogenesis.

Open access
Lei Li Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Lei Li in
Google Scholar
PubMed
Close
,
Ping Ma Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Ping Ma in
Google Scholar
PubMed
Close
,
Chen Huang Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Chen Huang in
Google Scholar
PubMed
Close
,
Yongjun Liu Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Yongjun Liu in
Google Scholar
PubMed
Close
,
Ye Zhang Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Ye Zhang in
Google Scholar
PubMed
Close
,
Chen Gao Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Chen Gao in
Google Scholar
PubMed
Close
,
Tianxia Xiao Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Tianxia Xiao in
Google Scholar
PubMed
Close
,
Pei-Gen Ren Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Pei-Gen Ren in
Google Scholar
PubMed
Close
,
Brian A Zabel Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Brian A Zabel in
Google Scholar
PubMed
Close
, and
Jian V Zhang Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Laboratory for Reproductive Health, Palo Alto Institute for Research and Education, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Search for other papers by Jian V Zhang in
Google Scholar
PubMed
Close

The novel adipokine chemerin plays a role in the regulation of lipid and carbohydrate metabolism, and recent reports of elevated chemerin levels in polycystic ovarian syndrome and preeclampsia have pointed to an emerging role of chemerin in reproduction. We hypothesised that chemerin, like other adipokines, may function to regulate male gonadal steroidogenesis. In this study, we show that chemerin and its three receptors chemokine-like receptor 1 (CMKLR1), G-protein-coupled receptor 1 (GPR1) and chemokine (C-C motif) receptor-like 2 were expressed in male reproductive tracts, liver and white adipose tissue. CMKLR1 and GPR1 proteins were localised specifically in the Leydig cells of human and rat testes by immunohistochemistry. The expression of chemerin and its receptors in rat testes was developmentally regulated and highly expressed in Leydig cells. In vitro treatment with chemerin suppressed the human chorionic gonadotropin (hCG)-induced testosterone production from primary Leydig cells, which was accompanied by the inhibition of 3β-hydroxysteroid dehydrogenase gene and protein expression. The hCG-activated p44/42 MAPK (Erk1/2) pathway in Leydig cells was also inhibited by chemerin cotreatment. Together, these data suggest that chemerin is a novel regulator of male gonadal steroidogenesis.

Free access
Jiali Liu Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA

Search for other papers by Jiali Liu in
Google Scholar
PubMed
Close
,
Yue Li Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Yue Li in
Google Scholar
PubMed
Close
,
Xiaoyan Zhou Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Xiaoyan Zhou in
Google Scholar
PubMed
Close
,
Xi Zhang Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Xi Zhang in
Google Scholar
PubMed
Close
,
Hao Meng Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Hao Meng in
Google Scholar
PubMed
Close
,
Sanyuan Liu Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Sanyuan Liu in
Google Scholar
PubMed
Close
,
Lei Zhang Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Lei Zhang in
Google Scholar
PubMed
Close
,
Juntao He Department of Health Office, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Juntao He in
Google Scholar
PubMed
Close
,
Qian He Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Qian He in
Google Scholar
PubMed
Close
, and
Yan Geng Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

Search for other papers by Yan Geng in
Google Scholar
PubMed
Close

High-fat diet (HFD) not only induces insulin resistance in liver, but also causes autophagic imbalance and metabolic disorders, increases chronic inflammatory response and induces mitochondrial dysfunction. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) has recently emerged as an important regulator of glucose metabolism and skeletal muscle insulin action. Its activation has been involved in the improvement of hepatic and adipose insulin action. But the underlying mechanism is not fully understood. In the present study, we aimed to address the direct effects of CaMKIV in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. Our results indicated obese mice receiving CaMKIV showed decreased blood glucose and serum insulin and improved insulin sensitivity as well as increased glucose tolerance compared with vehicle injection. Meanwhile, defective hepatic autophagy activity, impaired insulin signaling, increased inflammatory response and mitochondrial dysfunction in liver tissues which are induced by high-fat diet were also effectively alleviated by injection of CaMKIV. Consistent with these results, the addition of CaMKIV to the culture medium of BNL cl.2 hepatocytes markedly restored palmitate-induced hepatic insulin resistance and autophagic imbalance. These effects were nullified by blockade of cyclic AMP response element-binding protein (CREB), indicating the causative role of CREB in action of CaMKIV. Our findings suggested that CaMKIV restores hepatic autophagic imbalance and improves impaired insulin sensitivity via phosphorylated CREB signaling pathway, which may offer novel opportunities for treatment of obesity and diabetes.

Restricted access
Dong-Xu Han Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Dong-Xu Han in
Google Scholar
PubMed
Close
,
Chang-Jiang Wang Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Chang-Jiang Wang in
Google Scholar
PubMed
Close
,
Xu-Lei Sun Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Xu-Lei Sun in
Google Scholar
PubMed
Close
,
Jian-Bo Liu Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Jian-Bo Liu in
Google Scholar
PubMed
Close
,
Hao Jiang Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Hao Jiang in
Google Scholar
PubMed
Close
,
Yan Gao Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Yan Gao in
Google Scholar
PubMed
Close
,
Cheng-Zhen Chen Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Cheng-Zhen Chen in
Google Scholar
PubMed
Close
,
Bao Yuan Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Bao Yuan in
Google Scholar
PubMed
Close
, and
Jia-Bao Zhang Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, People’s Republic of China

Search for other papers by Jia-Bao Zhang in
Google Scholar
PubMed
Close

Circular RNAs (circRNAs) are a new class of RNA that have a stable structure characterized by covalently closed circular molecules and are involved in invasive pituitary adenomas and recurrent clinically nonfunctioning pituitary adenomas. However, information on circRNAs in the normal pituitary, especially in rats, is limited. In this study, we identified 4123 circRNAs in the immature (D15) and mature (D120) rat anterior pituitary using the Illumina platform, and 32 differentially expressed circRNAs were found. A total of 150 Gene Ontology terms were significantly enriched, and 16 KEGG pathways were found to contain differentially expressed genes. Moreover, we randomly selected eight highly expressed circRNAs and detected their relative expression levels in the mature and immature rat pituitary by qPCR. In addition, we predicted 90 interactions between 53 circRNAs and 57 miRNAs using miRanda. Notably, circ_0000964 and circ_0001303 are potential miRNA sponges that may regulate the Fshb gene. The expression profile of circRNAs in the immature and mature rat anterior pituitary may provide more information about the roles of circRNAs in the development and reproduction in mammals.

Free access
Hong-Hui Wang College of Life Sciences, Qingdao Agricultural University, Qingdao, China
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Hong-Hui Wang in
Google Scholar
PubMed
Close
,
Qian Cui Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Qian Cui in
Google Scholar
PubMed
Close
,
Teng Zhang State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Teng Zhang in
Google Scholar
PubMed
Close
,
Lei Guo State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lei Guo in
Google Scholar
PubMed
Close
,
Ming-Zhe Dong College of Life Sciences, Qingdao Agricultural University, Qingdao, China
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Ming-Zhe Dong in
Google Scholar
PubMed
Close
,
Yi Hou State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yi Hou in
Google Scholar
PubMed
Close
,
Zhen-Bo Wang State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhen-Bo Wang in
Google Scholar
PubMed
Close
,
Wei Shen Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Wei Shen in
Google Scholar
PubMed
Close
,
Jun-Yu Ma Laboratory for Germ Cell Metabolism, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Jun-Yu Ma in
Google Scholar
PubMed
Close
, and
Qing-Yuan Sun College of Life Sciences, Qingdao Agricultural University, Qingdao, China
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Search for other papers by Qing-Yuan Sun in
Google Scholar
PubMed
Close

As a fat storage organ, adipose tissue is distributed widely all over the body and is important for energy supply, body temperature maintenance, organ protection, immune regulation and so on. In humans, both underweight and overweight women find it hard to become pregnant, which suggests that appropriate fat storage can guarantee the female reproductive capacity. In fact, a large mass of adipose tissue distributes around the reproductive system both in the male and female. However, the functions of ovary fat pad (the nearest adipose tissue to ovary) are not known. In our study, we found that the ovary fat pad-removed female mice showed decreased fertility and less ovulated mature eggs. We further identified that only a small proportion of follicles developed to antral follicle, and many follicles were blocked at the secondary follicle stage. The overall secretion levels of estrogen and FSH were lower in the whole estrus cycle (especially at proestrus); however, the LH level was higher in ovary fat pad-removed mice than that in control groups. Moreover, the estrus cycle of ovary fat pad-removed mice showed significant disorder. Besides, the expression of FSH receptor decreased, but the LH receptor increased in ovary fat pad-removed mice. These results suggest that ovary fat pad is important for mouse reproduction.

Free access
Yingning Ji Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Yingning Ji in
Google Scholar
PubMed
Close
,
Wei Liu Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China

Search for other papers by Wei Liu in
Google Scholar
PubMed
Close
,
Yemin Zhu Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Yemin Zhu in
Google Scholar
PubMed
Close
,
Yakui Li Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Yakui Li in
Google Scholar
PubMed
Close
,
Ying Lu Department of Biochemistry and Molecular Biology of School of Basic Medical College of Fudan University, Shanghai, China

Search for other papers by Ying Lu in
Google Scholar
PubMed
Close
,
Qi Liu Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Qi Liu in
Google Scholar
PubMed
Close
,
Lingfeng Tong Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Lingfeng Tong in
Google Scholar
PubMed
Close
,
Lei Hu Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Lei Hu in
Google Scholar
PubMed
Close
,
Nannan Xu Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Nannan Xu in
Google Scholar
PubMed
Close
,
Zhangbing Chen Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Zhangbing Chen in
Google Scholar
PubMed
Close
,
Na Tian Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China

Search for other papers by Na Tian in
Google Scholar
PubMed
Close
,
Lifang Wu Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Lifang Wu in
Google Scholar
PubMed
Close
,
Lian Zhu Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Lian Zhu in
Google Scholar
PubMed
Close
,
Shuang Tang Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China

Search for other papers by Shuang Tang in
Google Scholar
PubMed
Close
,
Ping Zhang Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Ping Zhang in
Google Scholar
PubMed
Close
, and
Xuemei Tong Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Xuemei Tong in
Google Scholar
PubMed
Close

Transketolase (TKT), an enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), bi-directionally regulates the carbon flux between the PPP and glycolysis. Loss of TKT in adipose tissues decreased glycolysis and increased lipolysis and uncoupling protein-1 (UCP1) expression, protecting mice from high-fat diet-induced obesity. However, the role of TKT in brown adipose tissue (BAT)-dependent glucose homeostasis under normal chow diet remains to be elucidated. We found that TKT ablation increased levels of glucose transporter 4 (GLUT4), promoting glucose uptake and glycogen accumulation in BAT. Using the streptozotocin (STZ)-induced diabetic mouse model, we discovered that enhanced glucose uptake due to TKT deficiency in BAT contributed to decreasing blood glucose and weight loss, protecting mice from STZ-induced diabetes. Mechanistically, TKT deficiency decreased the level of thioredoxin-interacting protein, a known inhibitor for GLUT4, by decreasing NADPH and glutathione levels and inducing oxidative stress in BAT. Therefore, our data reveal a new role of TKT in regulating the anti-diabetic function of BAT as well as glucose homeostasis.

Restricted access
Lei Du State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
The Third Xiangya Hospital of Central South University, Changsha, Hunan, China

Search for other papers by Lei Du in
Google Scholar
PubMed
Close
,
Yang Wang State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Yang Wang in
Google Scholar
PubMed
Close
,
Cong-Rong Li State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Cong-Rong Li in
Google Scholar
PubMed
Close
,
Liang-Jian Chen State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Liang-Jian Chen in
Google Scholar
PubMed
Close
,
Jin-Yang Cai State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Jin-Yang Cai in
Google Scholar
PubMed
Close
,
Zheng-Rong Xia Analysis and Test Center, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Zheng-Rong Xia in
Google Scholar
PubMed
Close
,
Wen-Tao Zeng Animal Core Facility, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Wen-Tao Zeng in
Google Scholar
PubMed
Close
,
Zi-Bin Wang Analysis and Test Center, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Zi-Bin Wang in
Google Scholar
PubMed
Close
,
Xi-Chen Chen Analysis and Test Center, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Xi-Chen Chen in
Google Scholar
PubMed
Close
,
Fan Hu State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Fan Hu in
Google Scholar
PubMed
Close
,
Dong Zhang State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
Animal Core Facility, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Dong Zhang in
Google Scholar
PubMed
Close
,
Xiao-Wei Xing The Third Xiangya Hospital of Central South University, Changsha, Hunan, China

Search for other papers by Xiao-Wei Xing in
Google Scholar
PubMed
Close
, and
Zhi-Xia Yang State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Zhi-Xia Yang in
Google Scholar
PubMed
Close

Polycystic ovarian syndrome (PCOS) is a major severe ovary disorder affecting 5–10% of reproductive women around the world. PCOS can be considered a metabolic disease because it is often accompanied by obesity and diabetes. Brown adipose tissue (BAT) contains abundant mitochondria and adipokines and has been proven to be effective for treating various metabolic diseases. Recently, allotransplanted BAT successfully recovered the ovarian function of PCOS rat. However, BAT allotransplantation could not be applied to human PCOS; the most potent BAT is from infants, so voluntary donors are almost inaccessible. We recently reported that single BAT xenotransplantation significantly prolonged the fertility of aging mice and did not cause obvious immunorejection. However, PCOS individuals have distinct physiologies from aging mice; thus, it remains essential to study whether xenotransplanted rat BAT can be used for treating PCOS mice. In this study, rat-to-mouse BAT xenotransplantation, fortunately, did not cause severe rejection reaction, and significantly recovered ovarian functions, indicated by the recovery of fertility, oocyte quality, and the levels of multiple essential genes and kinases. Besides, the blood biochemical index, glucose resistance, and insulin resistance were improved. Moreover, transcriptome analysis showed that the recovered PCOS F0 mother following BAT xenotransplantation could also benefit the F1 generation. Finally, BAT xenotransplantation corrected characteristic gene expression abnormalities found in the ovaries of human PCOS patients. These findings suggest that BAT xenotransplantation could be a novel therapeutic strategy for treating PCOS patients.

Restricted access
Jiean Xu State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Jiean Xu in
Google Scholar
PubMed
Close
,
Qiuhua Yang State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Qiuhua Yang in
Google Scholar
PubMed
Close
,
Xiaoyu Zhang State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Xiaoyu Zhang in
Google Scholar
PubMed
Close
,
Zhiping Liu State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Zhiping Liu in
Google Scholar
PubMed
Close
,
Yapeng Cao State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Yapeng Cao in
Google Scholar
PubMed
Close
,
Lina Wang State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Lina Wang in
Google Scholar
PubMed
Close
,
Yaqi Zhou State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Yaqi Zhou in
Google Scholar
PubMed
Close
,
Xianqiu Zeng State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Xianqiu Zeng in
Google Scholar
PubMed
Close
,
Qian Ma State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Qian Ma in
Google Scholar
PubMed
Close
,
Yiming Xu Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China

Search for other papers by Yiming Xu in
Google Scholar
PubMed
Close
,
Yong Wang Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China

Search for other papers by Yong Wang in
Google Scholar
PubMed
Close
,
Lei Huang Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Search for other papers by Lei Huang in
Google Scholar
PubMed
Close
,
Zhen Han Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Search for other papers by Zhen Han in
Google Scholar
PubMed
Close
,
Tao Wang Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Search for other papers by Tao Wang in
Google Scholar
PubMed
Close
,
David Stepp Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by David Stepp in
Google Scholar
PubMed
Close
,
Zsolt Bagi Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Zsolt Bagi in
Google Scholar
PubMed
Close
,
Chaodong Wu Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA

Search for other papers by Chaodong Wu in
Google Scholar
PubMed
Close
,
Mei Hong State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China

Search for other papers by Mei Hong in
Google Scholar
PubMed
Close
, and
Yuqing Huo Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Yuqing Huo in
Google Scholar
PubMed
Close

Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.

Free access