Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Leighton T. McCabe x
Clear All Modify Search
Free access

Jay W Porter, Joe L Rowles III, Justin A Fletcher, Terese M Zidon, Nathan C Winn, Leighton T McCabe, Young-Min Park, James W Perfield II, John P Thyfault, R Scott Rector, Jaume Padilla and Victoria J Vieira-Potter

Exercise enhances insulin sensitivity; it also improves adipocyte metabolism and reduces adipose tissue inflammation through poorly defined mechanisms. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone-like protein whose insulin-sensitizing properties are predominantly mediated via receptor signaling in adipose tissue (AT). Recently, FGF21 has also been demonstrated to have anti-inflammatory properties. Meanwhile, an association between exercise and increased circulating FGF21 levels has been reported in some, but not all studies. Thus, the role that FGF21 plays in mediating the positive metabolic effects of exercise in AT are unclear. In this study, FGF21-knockout (KO) mice were used to directly assess the role of FGF21 in mediating the metabolic and anti-inflammatory effects of exercise on white AT (WAT) and brown AT (BAT). Male FGF21KO and wild-type mice were provided running wheels or remained sedentary for 8 weeks (n = 9–15/group) and compared for adiposity, insulin sensitivity (i.e., HOMA-IR, Adipo-IR) and AT inflammation and metabolic function (e.g., mitochondrial enzyme activity, subunit content). Adiposity and Adipo-IR were increased in FGF21KO mice and decreased by EX. The BAT of FGF21KO animals had reduced mitochondrial content and decreased relative mass, both normalized by EX. WAT and BAT inflammation was elevated in FGF21KO mice, reduced in both genotypes by EX. EX increased WAT Pgc1alpha gene expression, citrate synthase activity, COX I content and total AMPK content in WT but not FGF21KO mice. Collectively, these findings reveal a previously unappreciated anti-inflammatory role for FGF21 in WAT and BAT, but do not support that FGF21 is necessary for EX-mediated anti-inflammatory effects.

Restricted access

Terese M Zidon, Jaume Padilla, Kevin L Fritsche, Rebecca J. Welly, Leighton T. McCabe, Olivia E. Stricklin, Aaron P. Frank, Young-Min Park, Deborah J. Clegg, Dennis Lubahn, Jill Kanaley and Victoria Vieira-Potter

Loss of ovarian hormones leads to increased adiposity and insulin resistance (IR), increasing the risk for cardiovascular and metabolic diseases. The purpose of this study was to investigate whether the molecular mechanism behind the adverse systemic and adipose tissue-specific metabolic effects of ovariectomy requires loss of signaling through estrogen receptor alpha (ERα) or estrogen receptor beta (ERβ). We examined ovariectomized (OVX) and ovary-intact wildtype (WT), ERα-null (αKO), and ERβ-null (βKO) female mice (age ~49 weeks; n=7-12/group). All mice were fed a phytoestrogen-free diet (<15 mg/kg) and either remained ovary-intact (INT) or were OVX and followed for 12 weeks. Body composition, energy expenditure, glucose tolerance, and adipose tissue gene and protein expression were analyzed. INT αKO were ~25% fatter with reduced energy expenditure compared to age-matched INT WT controls and βKO mice (all p<0.001). Following OVX, αKO mice did not increase adiposity or experience a further increase in IR, unlike WT and βKO, suggesting that loss of signaling through ERα mediates OVX-induced metabolic dysfunction. In fact, OVX in αKO mice (i.e., signaling through ERβ in the absence of ERα) resulted in reduced adiposity, adipocyte size, and IR (p<0.05 for all). βKO mice responded adversely to OVX in terms of increased adiposity and development of IR. Together, these findings challenge the paradigm that ERα mediates metabolic protection over ERβ in all settings. These findings lead us to suggest that, following ovarian hormone loss, ERβ may mediate protective metabolic benefits.