Search Results

You are looking at 1 - 10 of 41 items for

  • Author: Li Liu x
Clear All Modify Search
Free access

Rong Wan, Chao Zhu, Rui Guo, Lai Jin, Yunxin Liu, Li Li, Hao Zhang and Shengnan Li

Urocortin (UCN1) is a member of corticotrophin-releasing factor (CRF) family, which has been proven to participate in inflammation. Previous work showed that dihydrotestosterone (DHT) could promote the inflammatory process. Little is known about the effect of DHT on UCN1 expression. The aim of our study is to investigate the effects and underlying mechanisms of DHT on endothelial UCN1 expression in the absence and presence of induced inflammation. Therefore, we tested the alterations of endothelial UCN1 expression treated with DHT in the presence or absence of lipopolysaccharide (LPS). Our data showed that DHT alone decreased UCN1 levels, which were attenuated in the presence of the androgen receptor (AR) antagonist flutamide. Conversely, in the presence of LPS, DHT augmented the LPS-induced increase in UCN1 expression, which was, interestingly, not affected by flutamide. When cells were treated with DHT alone, AR was upregulated and translocated into the nuclei, which might repress UCN1 expression via a potential androgen-responsive element found in human CRF family promoter. In the presence of LPS, DHT did not influence AR expression and location while it increased toll-like receptor 4 expression and activation, which was not altered by flutamide. DHT enhanced LPS-induced p38MAPK, ERK1/2, and nuclear factor κB pathway activation, which may contribute to the elevated expression of UCN1. These data suggest that DHT differentially influences UCN1 levels under normal and inflammatory conditions in human umbilical vein endothelial cells, which involves AR-dependent and -independent mechanisms respectively.

Free access

Can Liu, Mian Zhang, Meng-yue Hu, Hai-fang Guo, Jia Li, Yun-li Yu, Shi Jin, Xin-ting Wang, Li Liu and Xiao-dong Liu

Panax ginseng is one of the most popular herbal remedies. Ginsenosides, major bioactive constituents in P. ginseng, have shown good antidiabetic action, but the precise mechanism was not fully understood. Glucagon-like peptide-1 (GLP1) is considered to be an important incretin that can regulate glucose homeostasis in the gastrointestinal tract after meals. The aim of this study was to investigate whether ginseng total saponins (GTS) exerts its antidiabetic effects via modulating GLP1 release. Ginsenoside Rb1 (Rb1), the most abundant constituent in GTS, was selected to further explore the underlying mechanisms in cultured NCI-H716 cells. Diabetic rats were developed by a combination of high-fat diet and low-dose streptozotocin injection. The diabetic rats orally received GTS (150 or 300 mg/kg) daily for 4 weeks. It was found that GTS treatment significantly ameliorated hyperglycemia and dyslipidemia, accompanied by a significant increase in glucose-induced GLP1 secretion and upregulation of proglucagon gene expression. Data from NCI-H716 cells showed that both GTS and Rb1 promoted GLP1 secretion. It was observed that Rb1 increased the ratio of intracellular ATP to ADP concentration and intracellular Ca2 + concentration. The metabolic inhibitor azide (3 mM), the KATP channel opener diazoxide (340 μM), and the Ca2 + channel blocker nifedipine (20 μM) significantly reversed Rb1-mediated GLP1 secretion. All these results drew a conclusion that ginsenosides stimulated GLP1 secretion both in vivo and in vitro. The antidiabetic effects of ginsenosides may be a result of enhanced GLP1 secretion.

Free access

Yuhui Liu, Le Zhang, Jing Li, Zhongyan Shan and Weiping Teng

Marginal iodine deficiency is a major health problem in pregnant women, but its impact on nerve and intelligence development in offspring has been rarely reported. Our study aimed to investigate the effects of maternal marginal iodine deficiency on nerve and cognitive development in offspring and the related mechanisms. Marginal iodine-deficient rats were given 3 μg iodine per day, while normal control rats were given 4 μg iodine daily. Western blot was used to detect the amounts of brain-derived neurotropic factor (BDNF) and early growth response protein 1 (EGR1) in the hippocampus of each group. Immunohistochemistry was used to measure c-jun and c-fos expression in the hippocampal CA1 region. Finally, the water maze method was used to measure spatial performance. Free thyroxine (FT4) levels in marginal iodine-deficient rats decreased by about 30%. Seven days after birth, EGR1 and BDNF protein levels significantly decreased in the hippocampus of marginal iodine deficiency rats compared with the normal control group. In addition, c-jun and c-fos expression in the hippocampus of 40-day-old rats was decreased in marginal iodine-deficient rats, compared with control. The spatial learning and memory ability of 40-day-old marginal iodine-deficient rats had a downward trend compared with the normal control group. FT4 significantly decreased after pregnancy in rats with marginal iodine deficiency, affecting the expression of related proteins in the brain of offspring.

Free access

Aiying Liu, Liping Gao, Shoulei Kang, Ying Liu, Chuanying Xu, Hong Sun, Dongye Li and Changdong Yan

After menopause, the development of cardiovascular disease (CVD) is due not only to estrogen decline but also to androgen decline. This study examined the effects of either estradiol (E2) or testosterone replacement alone or E2–testosterone combination on isolated myocytes in ovariectomized (Ovx) rats subjected to ischemia/reperfusion (I/R). Furthermore, we determined whether the effects are associated with β2-adrenoceptor (β2-AR). Five groups of adult female Sprague–Dawley rats were used: Sham operation (Sham) rats, bilateral Ovx rats, Ovx rats with E2 40 μg/kg per day (Ovx+E), Ovx rats with testosterone 150 μg/kg per day (Ovx+T), and Ovx rats with E2 40 μg/kg per day+testosterone 150 μg/kg per day (Ovx+E/T). We determined the lactate dehydrogenase (LDH) release, percentage of rod-shaped cells and apoptosis of ventricular myocytes from rats of all groups subjected to I/R. Then, we determined the above indices and contractile function with or without a selective β2-AR antagonist ICI 118 551. We also determined the expression of β2-AR. Our data show that either E2 or testosterone replacement alone or E2 and testosterone in combination decreased the LDH release, increased the percentage of rod-shaped cells, reduced apoptotic cells (%), and combination treatment appeared to be more effective than either E2 or testosterone replacement alone. ICI 118 551 abolished the effects of the three. Combination supplementation also enhanced the expression of β2-AR. We concluded that in Ovx rats, testosterone enhances E2's cardioprotection, while E2 and testosterone in combination was more effective and the protective effects may be associated with β2-AR. The study highlights the potential therapeutic application for CVD in postmenopausal women.

Free access

Xiaojun Zhou, Jianjun Dong, Li Zhang, Ju Liu, Xiaofeng Dong, Qing Yang, Fupeng Liu and Lin Liao

It is well known that hyperglycemia is a trigger of atherosclerosis in patients with diabetes mellitus. However, the role of hyperglycemia in restenosis remains unclear. In this study, we investigated the effects of hyperglycemia on restenosis. Stenosis was evaluated in two sets of diabetic rabbit models: i) diabetic restenosis versus nondiabetic restenosis and ii) diabetic atherosclerosis versus nondiabetic atherosclerosis. Our results indicated that there was no difference in rates of stenosis between the diabetic and the nondiabetic groups in restenosis rabbit models. However, the incidence of stenosis was significantly higher in the diabetic atherosclerosis group compared with the nondiabetic atherosclerosis group. Similarly, the intima–media thickness and cell proliferation rate were significantly increased in the diabetic atherosclerosis group compared with the nondiabetic atherosclerosis group, but there was no difference between the diabetic restenosis and the nondiabetic restenosis groups. Our results indicate that hyperglycemia is an independent risk factor for atherosclerosis, but it has no evident effect on restenosis. These findings indicate that the processes of atherosclerosis and restenosis may involve different pathological mechanisms.

Free access

Shou-Si Lu, Yun-Li Yu, Hao-Jie Zhu, Xiao-Dong Liu, Li Liu, Yao-Wu Liu, Ping Wang, Lin Xie and Guang-Ji Wang

Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and β-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as β-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.

Restricted access

Min Liu, Shuo Xie, Weiwei Liu, Jingjin Li, Chao Li, Wei Huang, Hexin Li, Jinghai Song and Hong Zhang

Obesity is a worldwide health problem. Semaphorins are involved in axonal guidance; however, the role of secretory semaphorin 3G (SEMA3G) in regulating adipocyte differentiation remains unclear. Microarray analysis showed that the SEMA3G gene was upregulated in an in vitro model of adipogenesis. In this study, SEMA3G was highly expressed in the white adipose tissue and liver. Analysis of 3T3-L1 cell and primary mouse preadipocyte differentiation showed that SEMA3G mRNA and protein levels were increased during the middle stage of cell development. In vitro experiments also showed that adipocyte differentiation was promoted by SEMA3G; however, SEMA3G inhibition using a recombinant lentiviral vector expressing a specific shRNA showed the opposite results. Mice were fed a chow or high-fat diet (HFD); knockdown of SEMA3G was found to inhibit weight gain, reduce fat mass in the tissues, prevent lipogenesis in the liver tissue, reduce insulin resistance and ameliorate glucose tolerance in HFD mice. Additionally, the effect of SEMA3G on HFD-induced obesity was activated through PI3K/Akt/GSK3β signaling in the adipose tissue and the AMPK/SREBP-1c pathway in the liver. Moreover, the plasma concentrations of SEMA3G and leptin were measured in 20 obese and 20 non-obese human subjects. Both proteins were increased in obese subjects, who also exhibited a lower level of adiponectin and presented with insulin resistance. In summary, we demonstrated that SEMA3G is an adipokine essential for adipogenesis, lipogenesis, and insulin resistance and is associated with obesity. SEMA3G inhibition may, therefore, be useful for treating diet-induced obesity and its complications.

Free access

C R Liu, L Y Li, F Shi, X Y Zang, Y M Liu, Y Sun and B H Kan

Thyroid dysfunction is classified into hyperthyroidism and congenital hypothyroidism (CH). Both hyperthyroidism and CH can cause heart lesions; however, the mechanisms involved remain unclear. The left ventricle was collected from eu-, hyper-, and hypothyroid rat. RNA was extracted and reverse-transcripted to cDNA. Real-time fluorescence quantitation-PCR was used to quantify the differential expression of thyroid hormone receptor (TR) subtype mRNA among eu-, hyper-, and hypothyroid rat myocardium. Here, we show that compared with the normal myocardium, TRα1 mRNA expression was upregulated by 51% (P<0.01), TRα2 mRNA expression was downregulated by 58% (P<0.01), and TRβ1 mRNA expression remained unchanged in hyperthyroid rat myocardium (P>0.05). TRα1, TRα2, and TRβ1 were expressed in normal and hypothyroid rat myocardium throughout the developmental process. In hypothyroid rats, myocardial TRα1 mRNA expression was generally downregulated and the expression peak appeared late. Myocardial TRα2 mRNA expression was generally upregulated and the expression peak appeared late. Myocardial TRβ1 mRNA expression was generally downregulated and changed similarly with the control group. In addition, the hypogenetic myocardium can be seen in the hypothyroid rat by pathology study. Taken together, the abnormal expression of TR subtype mRNA may have a close relationship with the pathogenesis of CH and hyperthyroidism heart disease.

Free access

Caiping Mao, Rong Liu, Le Bo, Ningjing Chen, Shigang Li, Shuixiu Xia, Jie Chen, Dawei Li, Lubo Zhang and Zhice Xu

Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin–angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

Free access

Guohong Liu, Mirta Grifman, James Macdonald, Peter Moller, Flossie Wong-Staal and Qi-Xiang Li

Adiponectin is an anti-diabetic hormone secreted byadipocytes. Circulating adiponectin levels are lower in obese and type II diabetic patients than in healthy people. Weight loss or thiazolidinedione treatment increases plasma adiponectin levels. Animal models and human studies suggest that elevated adiponectin levels increase insulin sensitivity. We screened a library of drug-like compounds and natural products for novel agents enhancing adiponectin production. We identified isoginkgetin, a compound derived from the leaves of Ginkgo biloba, to up-regulate adiponectin secretion with potency comparable to that of rosiglitazone, a known modulator of adiponectin production. However, unlike rosiglitazone, peroxisome proliferators-activated receptor γ activity seems not required for the action of isoginkgetin, and isoginkgetin has only a slight effect on adipogenesis, which makes it an attractive candidate for anti-diabetic treatment. Further investigation revealed that both isoginkgetin and rosiglitazone activate AMP-activated protein kinase (AMPK) in adipocytes. Our findings suggest a novel mechanism for the elevation of adiponectin by isoginkgetin, which is different from that of rosiglitazone. Furthermore, this novel mechanism for adiponectin regulation involving AMPK can potentially facilitate new understanding of metabolic diseases and identification of new targets, as well as agents that increase plasma adiponectin levels.