Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Liang-Jian Chen x
  • All content x
Clear All Modify Search
Restricted access

Lei Du, Yang Wang, Cong-Rong Li, Liang-Jian Chen, Jin-Yang Cai, Zheng-Rong Xia, Wen-Tao Zeng, Zi-Bin Wang, Xi-Chen Chen, Fan Hu, Dong Zhang, Xiao-Wei Xing, and Zhi-Xia Yang

Polycystic ovarian syndrome (PCOS) is a major severe ovary disorder affecting 5–10% of reproductive women around the world. PCOS can be considered a metabolic disease because it is often accompanied by obesity and diabetes. Brown adipose tissue (BAT) contains abundant mitochondria and adipokines and has been proven to be effective for treating various metabolic diseases. Recently, allotransplanted BAT successfully recovered the ovarian function of PCOS rat. However, BAT allotransplantation could not be applied to human PCOS; the most potent BAT is from infants, so voluntary donors are almost inaccessible. We recently reported that single BAT xenotransplantation significantly prolonged the fertility of aging mice and did not cause obvious immunorejection. However, PCOS individuals have distinct physiologies from aging mice; thus, it remains essential to study whether xenotransplanted rat BAT can be used for treating PCOS mice. In this study, rat-to-mouse BAT xenotransplantation fortunately did not cause severe rejection reaction, and significantly recovered ovarian functions, indicated by the recovery of fertility, oocyte quality, and the levels of multiple essential genes and kinases. Besides, the blood biochemical index, glucose resistance, and insulin resistance were improved. Moreover, transcriptome analysis showed that the recovered PCOS F0 mother following BAT xenotransplantation could also benefit the F1 generation. Finally, BAT xenotransplantation corrected characteristic gene expression abnormalities found in the ovaries of human PCOS patients. These findings suggest that BAT xenotransplantation could be a novel therapeutic strategy for treating PCOS patients.

Free access

Jinn-Yang Chen, Deng-Yuan Jian, Chih-Chan Lien, Yu-Ting Lin, Ching-Heng Ting, Luen-Kui Chen, Ting-Chia Hsu, Hsuan-Min Huang, Yu-Ting Wu, Tse-Ting Kuan, Yu-Wen Chao, Liang-Yi Wu, Seng-Wong Huang, and Chi-Chang Juan

Obesity is a risk factor that promotes progressive kidney disease. Studies have shown that an adipocytokine imbalance contributes to impaired renal function in humans and animals, but the underlying interplay between adipocytokines and renal injury remains to be elucidated. We aimed to investigate the mechanisms linking obesity to chronic kidney disease. We assessed renal function in high-fat (HF) diet-fed and normal diet-fed rats, and the effects of preadipocyte- and adipocyte-conditioned medium on cultured podocytes. HF diet-fed and normal diet-fed Sprague Dawley rats were used to analyze the changes in plasma BUN, creatinine, urine protein and renal histology. Additionally, podocytes were incubated with preadipocyte- or adipocyte-conditioned medium to investigate the effects on podocyte morphology and protein expression. In the HF diet group, 24 h urinary protein excretion (357.5 ± 64.2 mg/day vs 115.9 ± 12.4 mg/day, P < 0.05) and the urine protein/creatinine ratio were significantly higher (1.76 ± 0.22 vs 1.09 ± 0.15, P < 0.05), increased kidney weight (3.54 ± 0.04 g vs 3.38 ± 0.04 g, P < 0.05) and the glomerular volume and podocyte effacement increased by electron microscopy. Increased renal expression of desmin and decreased renal expression of CD2AP and nephrin were also seen in the HF diet group (P < 0.05). Furthermore, we found that adipocyte-conditioned medium-treated podocytes showed increased desmin expression and decreased CD2AP and nephrin expression compared with that in preadipocyte-conditioned medium-treated controls (P < 0.05). These findings show that adipocyte-derived factor(s) can modulate renal function. Adipocyte-derived factors play an important role in obesity-related podocytopathy.