Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Liping Luo x
  • All content x
Clear All Modify Search
Free access

Liping Luo and Meilian Liu

Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.

Restricted access

Ya Liu, Xiaoqing Zhou, Ye Xiao, Changjun Li, Yan Huang, Qi Guo, Tian Su, Lei Fu, and Liping Luo

Nonalcoholic fatty liver disease (NAFLD) is becoming the most prevalent liver disease worldwide, is characterized by liver steatosis and is often accompanied with other pathological features such as insulin resistance. However, the underlying mechanisms are not fully understood, and specific pharmacological agents need to be developed. Here, we investigated the role of microRNA-188 (miR-188) as a negative regulator in hepatic glucose and lipid metabolism. miR-188 was upregulated in the liver of obese mice. Loss of miR-188 alleviated diet-induced hepatosteatosis and insulin resistance. In contrast, liver-specific overexpression of miR-188 aggravated hepatic steatosis and insulin resistance during high-fat diet feeding. Mechanistically, we found that the negative effects of miR-188 on lipid and glucose metabolism were mediated by the autophagy pathway via targeting autophagy-related gene 12 (Atg12). Furthermore, suppressing miR-188 in the liver of obese mice improved liver steatosis and insulin resistance. Taken together, our findings reveal a new regulatory role of miR-188 in glucose and lipid metabolism through the autophagy pathway, and provide a therapeutic insight for NAFLD.