Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Lu Xu x
Clear All Modify Search
Restricted access

Te Du, Liu Yang, Xu Xu, Xiaofan Shi, Xin Xu, Jian Lu, Jianlu Lv, Xi Huang, Jing Chen, Heyao Wang, Jiming Ye, Lihong Hu and Xu Shen

Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.

Free access

Yanwen Jiang, Lu Chen, Robert N Taylor, Chunjin Li and Xu Zhou

Retinol (vitamin A) and its derivatives, collectively known as retinoids, are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis and cell proliferation and differentiation. Despite the fact that most events in the endometrium are predominantly regulated by steroid hormones (estrogens and progesterone), accumulating evidence shows that retinoid signaling is also involved in the development and maintenance of the endometrium, stromal decidualization and blastocyst implantation. Moreover, aberrant retinoid metabolism seems to be a critical factor in the development of endometriosis, a common gynecological disease, which affects up to 10% of reproductive age women and is characterized by the ectopic localization of endometrial-like tissue in the pelvic cavity. This review summarizes recent advances in research on the mechanisms and molecular actions of retinoids in normal endometrial development and physiological function. The potential roles of abnormal retinoid signaling in endometriosis are also discussed. The objectives are to identify limitations in current knowledge regarding the molecular actions of retinoids in endometrial biology and to stimulate new investigations toward the development potential therapeutics to ameliorate or prevent endometriosis symptoms.

Free access

Tong Sun, Wen-Bo Deng, Hong-Lu Diao, Hua Ni, Yu-Yan Bai, Xing-Hong Ma, Li-Bin Xu and Zeng-Ming Yang

Prostaglandin (PGE) 2 is the most common prostanoid and plays an important role in female reproduction. The aim of this study was to examine the expression and regulation of microsomal (m) PGE synthase (PGES)-1 and cytosolic (c) PGES in the mouse ovary during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and immunohistochemistry. Both mPGES-1 mRNA signals and immunostaining were localized in the granulosa cells, but not in the thecal cells and oocytes. cPGES mRNA signals were localized in both granulosa cells and oocytes, whereas cPGES immunostaining was exclusively localized in the oocytes. In our superovulated model of immature mice, there was a basal level of mPGES-1 mRNA signals in the granulosa cells at 48 h after equine chorionic gonadotropin (eCG) treatment. mPGES-1 mRNA level was induced by human chorionic gonadotropin (hCG) treatment for 0.5 h, whereas mPGES-1 immunostaining was slightly induced at 0.5 h after hCG treatment and reached a maximal level at 3 h after hCG treatment. eCG treatment had no obvious effects on either cPGES mRNA signals or immunostaining. A strong level of cPGES immunostaining was present in both unstimulated and eCG-treated groups. Both mPGES-1 mRNA signals and immunostaining were highly detected in the corpus luteum 2 days post-hCG injection and declined from days 3 to 7 post-hCG injection. cPGES immunostaining was at a basal level or not detectable from days 1 to 7 after hCG injection and was highly expressed in the corpus luteum from days 9 to 15 post-hCG injection. PGE2 biosynthesized through the mPGES-1 pathway may be important for follicular development, ovulation and luteal formation.

Restricted access

Rumana Yasmeen, Qiwen Shen, Aejin Lee, Jacob H Leung, Devan Kowdley, David J DiSilvestro, Lu Xu, Kefeng Yang, Andrei Maiseyeu, Naresh C Bal, Muthu Periasamy, Paolo Fadda and Ouliana Ziouzenkova

Adipokine leptin regulates neuroendocrine circuits that control energy expenditure, thermogenesis and weight loss. However, canonic regulators of leptin secretion, such as insulin and malonyl CoA, do not support these processes. We hypothesize that epiregulin (EREG), a growth factor that is secreted from fibroblasts under thermogenic and cachexia conditions, induces leptin secretion associated with energy dissipation. The effects of EREG on leptin secretion were studied ex vivo, in the intra-abdominal white adipose tissue (iAb WAT) explants, as well as in vivo, in WT mice with diet-induced obesity (DIO) and in ob/ob mice. These mice were pair fed a high-fat diet and treated with intraperitoneal injections of EREG. EREG increased leptin production and secretion in a dose-dependent manner in iAb fat explants via the EGFR/MAPK pathway. After 2 weeks, the plasma leptin concentration was increased by 215% in the EREG-treated group compared to the control DIO group. EREG-treated DIO mice had an increased metabolic rate and core temperature during the active dark cycle and displayed cold-induced thermogenesis. EREG treatment reduced iAb fat mass, the major site of leptin protein production and secretion, but did not reduce the mass of the other fat depots. In the iAb fat, expression of genes supporting mitochondrial oxidation and thermogenesis was increased in EREG-treated mice vs control DIO mice. All metabolic and gene regulation effects of EREG treatment were abolished in leptin-deficient ob/ob mice. Our data revealed a new role of EREG in induction of leptin secretion leading to the energy expenditure state. EREG could be a potential target protein to regulate hypo- and hyperleptinemia, underlying metabolic and immune diseases.