Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M Hamada x
  • Refine by access: All content x
Clear All Modify Search
T. Hamada
Search for other papers by T. Hamada in
Google Scholar
PubMed
Close
,
G. Watanabe
Search for other papers by G. Watanabe in
Google Scholar
PubMed
Close
,
T. Kokuho
Search for other papers by T. Kokuho in
Google Scholar
PubMed
Close
,
K. Taya
Search for other papers by K. Taya in
Google Scholar
PubMed
Close
,
S. Sasamoto
Search for other papers by S. Sasamoto in
Google Scholar
PubMed
Close
,
Y. Hasegawa
Search for other papers by Y. Hasegawa in
Google Scholar
PubMed
Close
,
K. Miyamoto
Search for other papers by K. Miyamoto in
Google Scholar
PubMed
Close
, and
M. Igarashi
Search for other papers by M. Igarashi in
Google Scholar
PubMed
Close

ABSTRACT

A sensitive radioimmunoassay (RIA) for the determination of inhibin in peripheral plasma and tissue homogenates of different species has been developed using antisera to partially purified bovine follicular fluid (bFF) inhibin and 125I-labelled bFF 32 kDa inhibin. Antisera were produced by immunization of rabbits with partially purified bFF inhibin prepared by immunoaffinity chromatography. Increasing doses of a high titre antiserum could neutralize the suppressing effect of bFF, porcine follicular fluid and rat ovarian homogenate on FSH secretion from rat anterior pituitary cells in culture. Sensitivity of the assay was 3·1 ng International Research Standard of porcine inhibin per tube. Parallel inhibition curves were obtained for inhibin preparations from female and male animals of ten species, i.e. cattle, goats, sheep, cats, dogs, monkeys, pigs, horses, rats and man. Inhibin subunits and related proteins cross-reacted minimally with the antiserum used in the study. Plasma concentrations of inhibin in adult male and female rats were measured by the RIA before and at various times after gonadectomy. Inhibin levels in peripheral plasma before gonadectomy were significantly higher in adult female than in adult male rats. Inhibin levels decreased abruptly after gonadectomy in both sexes and they correlated negatively with plasma concentrations of FSH. This inhibin RIA will facilitate studies of the physiology of inhibin in various species of animals.

Journal of Endocrinology (1989) 122, 697–704

Restricted access
T Mano
Search for other papers by T Mano in
Google Scholar
PubMed
Close
,
R Sinohara
Search for other papers by R Sinohara in
Google Scholar
PubMed
Close
,
Y Sawai
Search for other papers by Y Sawai in
Google Scholar
PubMed
Close
,
N Oda
Search for other papers by N Oda in
Google Scholar
PubMed
Close
,
Y Nishida
Search for other papers by Y Nishida in
Google Scholar
PubMed
Close
,
T Mokuno
Search for other papers by T Mokuno in
Google Scholar
PubMed
Close
,
M Kotake
Search for other papers by M Kotake in
Google Scholar
PubMed
Close
,
M Hamada
Search for other papers by M Hamada in
Google Scholar
PubMed
Close
,
R Masunaga
Search for other papers by R Masunaga in
Google Scholar
PubMed
Close
,
A Nakai
Search for other papers by A Nakai in
Google Scholar
PubMed
Close
, and
A Nagasaka
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Close

Abstract

Active oxygen species are reported to cause organ damage. This study was therefore designed to determine the behaviour of antioxidants and free radical scavengers so as to reveal changes in animals in the hyper- and hypothyroid state.

Levels of antioxidant factors (i.e. coenzyme Q (CoQ)10, CoQ9 and vitamin E) and free radical scavengers (catalase, glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD)) were measured in the heart muscles of rats rendered hyper- or hypothyroid by 4 weeks of thyroxine (T4) or methimazol treatment. Serum levels of CoQ9 and total SOD were also measured.

A significant reduction in CoQ9 levels was observed in the heart muscles of both hyper- and hypothyroid rats when compared with control hearts. There was no difference in serum CoQ9 levels in thyroid dysfunction when compared with control animals. Levels of vitamin E in the heart muscles of hyperthyroid rats were significantly increased, and there was no reduction in vitamin E levels in hypothyroid rats when compared with control hearts. GSH-PX levels in the heart muscle were reduced in hyperthyroid rats and increased in hypothyroid rats when compared with control hearts. However, there were no differences in catalase levels in heart muscle between hyper- and hypothyroid rats. The concentration of SOD in heart muscle was increased in hyperthyroid rats and was not decreased in hypothyroid rats compared with control rats, suggesting the induction of SOD by excessive production of O2 .

These data suggest that the changes in these scavengers have some role in cardiac dysfunction in the hyper- and hypothyroid state in the rat.

Journal of Endocrinology (1995) 145, 131–136

Restricted access
T Mano
Search for other papers by T Mano in
Google Scholar
PubMed
Close
,
R Sinohara
Search for other papers by R Sinohara in
Google Scholar
PubMed
Close
,
Y Sawai
Search for other papers by Y Sawai in
Google Scholar
PubMed
Close
,
N Oda
Search for other papers by N Oda in
Google Scholar
PubMed
Close
,
Y Nishida
Search for other papers by Y Nishida in
Google Scholar
PubMed
Close
,
T Mokuno
Search for other papers by T Mokuno in
Google Scholar
PubMed
Close
,
K Asano
Search for other papers by K Asano in
Google Scholar
PubMed
Close
,
Y Ito
Search for other papers by Y Ito in
Google Scholar
PubMed
Close
,
M Kotake
Search for other papers by M Kotake in
Google Scholar
PubMed
Close
,
M Hamada
Search for other papers by M Hamada in
Google Scholar
PubMed
Close
,
A Nakai
Search for other papers by A Nakai in
Google Scholar
PubMed
Close
, and
A Nagasaka
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Close

Abstract

To determine how lipid peroxides and free radical scavengers are changed in the brain of hyper- or hypothyroid rats, we examined the behavior of lipid peroxide and free radical scavengers in the cerebral cortex of aged (1·5 years old) rats that had been made hyper- or hypothyroid by the administration of thyroxine or methimazol for 4 weeks. Concentrations of catalase, Mn-superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased in hyperthyroid rats compared with euthyroid rats. Concentrations of total SOD, Cu,Zn-SOD and GSH-PX were increased but that of Mn-SOD was decreased in hypothyroid animals. There were no differences among hyperthyroid, hypothyroid and euthyroid rats in the levels of coenzymes 9 or 10. The concentration of lipid peroxides, determined indirectly by the measurement of thiobarbituric acid reactants, was decreased in hyperthyroid rats but not in hypothyroid rats when compared with euthyroid animals.

These findings suggest that free radicals and lipid peroxides are scavenged to compensate for the changes induced by hyper- or hypothyroidism.

Journal of Endocrinology (1995) 147, 361–365

Restricted access