Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M Holst x
  • Refine by access: All content x
Clear All Modify Search
O Nilsson
Search for other papers by O Nilsson in
Google Scholar
PubMed
Close
,
D Chrysis
Search for other papers by D Chrysis in
Google Scholar
PubMed
Close
,
O Pajulo
Search for other papers by O Pajulo in
Google Scholar
PubMed
Close
,
A Boman
Search for other papers by A Boman in
Google Scholar
PubMed
Close
,
M Holst
Search for other papers by M Holst in
Google Scholar
PubMed
Close
,
J Rubinstein
Search for other papers by J Rubinstein in
Google Scholar
PubMed
Close
,
E Martin Ritzen
Search for other papers by E Martin Ritzen in
Google Scholar
PubMed
Close
, and
L Savendahl
Search for other papers by L Savendahl in
Google Scholar
PubMed
Close

Sex steroids are required for a normal pubertal growth spurt and fusion of the human epiphyseal growth plate. However, the localization of sex steroid receptors in the human pubertal growth plate remains controversial. We have investigated the expression of estrogen receptor (ER) alpha, ERbeta and androgen receptor (AR) in biopsies of proximal tibial growth plates obtained during epiphyseal surgery in 16 boys and eight girls. All pubertal stages were represented (Tanner stages 1-5). ERalpha, ERbeta and AR were visualized with immunohistochemistry and the number of receptor-positive cells was counted using an image analysis system. Percent receptor-positive chondrocytes were assessed in the resting, proliferative and hypertrophic zones and evaluated for sex differences and pubertal trends. Both ERalpha- and ERbeta-positive cells were detected at a greater frequency in the resting and proliferative zones than in the hypertrophic zone (64+/-2%, 64+/-2% compared with 38+/-3% for ERalpha, and 63+/-3%, 66+/-3% compared with 53+/-3% for ERbeta), whereas AR was more abundant in the resting (65+/-3%) and hypertrophic zones (58+/-3%) than in the proliferative zone (41+/-3%). No sex difference in the patterns of expression was detected. For ERalpha and AR, the percentage of receptor-positive cells was similar at all Tanner pubertal stages, whereas ERbeta showed a slight decrease in the proliferative zone during pubertal development (P<0.05). In summary, our findings suggest that ERalpha, ERbeta and AR are expressed in the human growth plate throughout pubertal development, with no difference between the sexes.

Free access
Berit Svendsen Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Berit Svendsen in
Google Scholar
PubMed
Close
,
Ramona Pais Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Ramona Pais in
Google Scholar
PubMed
Close
,
Maja S Engelstoft Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Maja S Engelstoft in
Google Scholar
PubMed
Close
,
Nikolay B Milev Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Nikolay B Milev in
Google Scholar
PubMed
Close
,
Paul Richards Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Paul Richards in
Google Scholar
PubMed
Close
,
Charlotte B Christiansen Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Charlotte B Christiansen in
Google Scholar
PubMed
Close
,
Kristoffer L Egerod Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Kristoffer L Egerod in
Google Scholar
PubMed
Close
,
Signe M Jensen Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Signe M Jensen in
Google Scholar
PubMed
Close
,
Abdella M Habib Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Abdella M Habib in
Google Scholar
PubMed
Close
,
Fiona M Gribble Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Fiona M Gribble in
Google Scholar
PubMed
Close
,
Thue W Schwartz Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Thue W Schwartz in
Google Scholar
PubMed
Close
,
Frank Reimann Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Frank Reimann in
Google Scholar
PubMed
Close
, and
Jens J Holst Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Wellcome Trust – MRC Institute of Metabolic Science, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark

Search for other papers by Jens J Holst in
Google Scholar
PubMed
Close

The incretin hormones glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from intestinal endocrine cells, the so-called L- and K-cells. The cells are derived from a common precursor and are highly related, and co-expression of the two hormones in so-called L/K-cells has been reported. To investigate the relationship between the GLP1- and GIP-producing cells more closely, we generated a transgenic mouse model expressing a fluorescent marker in GIP-positive cells. In combination with a mouse strain with fluorescent GLP1 cells, we were able to estimate the overlap between the two cell types. Furthermore, we used primary cultured intestinal cells and isolated perfused mouse intestine to measure the secretion of GIP and GLP1 in response to different stimuli. Overlapping GLP1 and GIP cells were rare (∼5%). KCl, glucose and forskolin+IBMX increased the secretion of both GLP1 and GIP, whereas bombesin/neuromedin C only stimulated GLP1 secretion. Expression analysis showed high expression of the bombesin 2 receptor in GLP1 positive cells, but no expression in GIP-positive cells. These data indicate both expressional and functional differences between the GLP1-producing ‘L-cell’ and the GIP-producing ‘K-cell’.

Free access