Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M L Nguyen x
Clear All Modify Search
Free access

L E Nicol, W R Grant, S M Comstock, M L Nguyen, M S Smith, K L Grove and D L Marks

Free access

L E Nicol, W F Grant, S M Comstock, M L Nguyen, M S Smith, K L Grove and D L Marks

Chronic high caloric intake has contributed to the increased prevalence of pediatric obesity and related morbidities. Most overweight or obese children, however, do not present with frank metabolic disease but rather insulin resistance or subclinical precursors. The innate immune system plays a role in the pathophysiology of type 2 diabetes but how it contributes to early metabolic dysfunction in children on chronic high-fat diet (HFD) is unclear. We hypothesize that such inflammation is present in the pancreas of children and is associated with early insulin resistance. We used nonhuman primate (NHP) juveniles exposed to chronic HFD as a model of early pediatric metabolic disease to demonstrate increased pancreatic inflammatory markers before the onset of significant obesity or glucose dysregulation. Pancreata from 13-month-old Japanese macaques exposed to a HFD from in utero to necropsy were analyzed for expression of cytokines and islet-associated macrophages. Parameters from an intravenous glucose tolerance test were correlated with cytokine expression. Before significant glucose dysregulation, the HFD cohort had a twofold increase in interleukin 6 (IL6), associated with decreased first-phase insulin response and a sexually dimorphic (male) increase in IL1β correlating with increased fasting glucose levels. The number of islet-associated macrophages was also increased. Pancreata from juvenile NHP exposed to HFD have increased inflammatory markers and evidence of innate immune infiltration before the onset of significant obesity or glucose dysregulation. Given the parallel development of metabolic disease between humans and NHPs, these findings have strong relevance to the early metabolic disease driven by a chronic HFD in children.

Free access

R De Matteo, D J Hodgson, T Bianco-Miotto, V Nguyen, J A Owens, R Harding, B J Allison, G Polglase, M J Black and K L Gatford

Preterm birth is associated with increased risk of type 2 diabetes (T2D) in adulthood; however, the underlying mechanisms are poorly understood. We therefore investigated the effect of preterm birth at ~0.9 of term after antenatal maternal betamethasone on insulin sensitivity, secretion and key determinants in adulthood, in a clinically relevant animal model. Glucose tolerance and insulin secretion (intravenous glucose tolerance test) and whole-body insulin sensitivity (hyperinsulinaemic euglycaemic clamp) were measured and tissue collected in young adult sheep (14 months old) after epostane-induced preterm (9M, 7F) or term delivery (11M, 6F). Glucose tolerance and disposition, insulin secretion, β-cell mass and insulin sensitivity did not differ between term and preterm sheep. Hepatic PRKAG2 expression was greater in preterm than in term males (P = 0.028), but did not differ between preterm and term females. In skeletal muscle, SLC2A4 (P = 0.019), PRKAA2 (P = 0.021) and PRKAG2 (P = 0.049) expression was greater in preterm than in term overall and in males, while INSR (P = 0.047) and AKT2 (P = 0.043) expression was greater in preterm than in term males only. Hepatic PRKAG2 expression correlated positively with whole-body insulin sensitivity in males only. Thus, preterm birth at 0.9 of term after betamethasone does not impair insulin sensitivity or secretion in adult sheep, and has sex-specific effects on gene expression of the insulin signalling pathway. Hence, the increased risk of T2D in preterm humans may be due to factors that initiate preterm delivery or in early neonatal exposures, rather than preterm birth per se.