Search Results

You are looking at 1 - 6 of 6 items for

  • Author: M M Morales x
  • Refine by access: All content x
Clear All Modify Search
F Gaytan
Search for other papers by F Gaytan in
Google Scholar
PubMed
Close
,
C Bellido
Search for other papers by C Bellido in
Google Scholar
PubMed
Close
,
C Morales
Search for other papers by C Morales in
Google Scholar
PubMed
Close
,
M García
Search for other papers by M García in
Google Scholar
PubMed
Close
,
N van Rooijen
Search for other papers by N van Rooijen in
Google Scholar
PubMed
Close
, and
E Aguilar
Search for other papers by E Aguilar in
Google Scholar
PubMed
Close

Abstract

Testicular macrophages are a relevant cell type for the regulation of Leydig cell steroidogenesis. The availability of liposome technology allows in vivo manipulation of macrophages in order to analyze their role in the regulation of the hypothalamic-pituitary-testicular axis. In this study, adult (70 days of age) and prepubertal (22 days of age) rats were injected intratesticularly with liposomes containing either dichloromethylene diphosphonate (C12MDP) to deplete testicular macrophages or muramyl tripeptide (MTP-PE) to activate them. Control rats were injected with the corresponding volumes of 0·9% NaCl. Animals were killed 10 days after treatment. Adult rats injected bilaterally or unilaterally with C12MDP liposomes showed increased serum LH and testosterone concentrations, as well as increased testosterone concentrations in the testicular interstitial fluid. In unilaterally injected rats, testosterone concentrations in the interstitial fluid were higher in the macrophage-containing testes than in the contralateral, macrophage-depleted testes. Adult rats treated bilaterally with MTP-PE liposomes showed increased numbers of testicular macrophages, whereas the number of Leydig cells was unchanged. Serum LH concentrations were decreased, but no changes were found in testosterone concentrations. Prepubertal rats treated bilaterally with C12MDP liposomes showed decreased numbers of Leydig cells. However, serum LH and testosterone concentrations were increased. Otherwise, prepubertal rats treated bilaterally with MTP-PE liposomes showed increased numbers of macrophages and Leydig cells, as well as increased serum testosterone concentrations. These data suggest that testicular macrophage-derived factors act at two different levels in the pituitary-testicular axis: first, at a central level by inhibiting LH secretion, and secondly, at a local level by stimulating Leydig cell steroidogenesis.

Journal of Endocrinology (1996) 150, 57–65

Restricted access
D Santos Ornellas
Search for other papers by D Santos Ornellas in
Google Scholar
PubMed
Close
,
R Grozovsky
Search for other papers by R Grozovsky in
Google Scholar
PubMed
Close
,
RC Goldenberg
Search for other papers by RC Goldenberg in
Google Scholar
PubMed
Close
,
DP Carvalho
Search for other papers by DP Carvalho in
Google Scholar
PubMed
Close
,
P Fong
Search for other papers by P Fong in
Google Scholar
PubMed
Close
,
WB Guggino
Search for other papers by WB Guggino in
Google Scholar
PubMed
Close
, and
M Morales
Search for other papers by M Morales in
Google Scholar
PubMed
Close

Thyroid hormones has its main role in controlling metabolism, but it can also modulate extracellular fluid Volume (ECFV) through its action on the expression and activity of Na(+) transporters. Otherwise, chloride is the main anion in the ECFV and the influence of thyroid hormones in the regulation of chloride transporters is not yet understood. In this work, we studied the effect of thyroid hormones in the expression of ClC-2, a cell Volume-, pH- and voltage-sensitive Cl(-) channel, in rat kidney. To analyze the modulation of ClC-2 gene expression by thyroid hormones, we used hypothyroid (Hypo) rats with or without thyroxine (T(4)) replacement and hyperthyroid (Hyper) rats as our experimental models. Total RNA was isolated and the expression of ClC-2 mRNA was evaluated by a ribonuclease protection assay, and/or semi-quantitative RT-PCR. Renal ClC-2 expression decreased in Hypo rats and increased in Hyper rats. In addition, semi-quantitative RT-PCR of different nephron segments showed that these changes were due exclusively to the modulation of ClC-2 mRNA expression by thyroid hormone in convoluted and straight proximal tubules. To investigate whether thyroid hormones action was direct or indirect, renal proximal tubule primary culture cells were prepared and subjected to different T(4) concentrations. ClC-2 mRNA expression was increased by T(4) in a dose-dependent fashion, as analyzed by RT-PCR. Western blotting demonstrated that ClC-2 protein expression followed the same profile of mRNA expression.

Free access
MB Martin
Search for other papers by MB Martin in
Google Scholar
PubMed
Close
,
SV Angeloni
Search for other papers by SV Angeloni in
Google Scholar
PubMed
Close
,
P Garcia-Morales
Search for other papers by P Garcia-Morales in
Google Scholar
PubMed
Close
,
PF Sholler
Search for other papers by PF Sholler in
Google Scholar
PubMed
Close
,
MD Castro-Galache
Search for other papers by MD Castro-Galache in
Google Scholar
PubMed
Close
,
JA Ferragut
Search for other papers by JA Ferragut in
Google Scholar
PubMed
Close
, and
M Saceda
Search for other papers by M Saceda in
Google Scholar
PubMed
Close

Results presented in this study demonstrate that treatment of MCF-7 cells with taxol resulted in induction of estrogen receptor-alpha (ER alpha) gene transcription with a subsequent increase in ER alpha mRNA; this effect was promoter specific since taxol did not affect total transcription in MCF-7 cells and lacked an effect on transcription of the human acidic ribosomal phosphoprotein protein PO, progesterone receptor, and pS2 genes. In contrast to the increase in transcription of the ER alpha gene, taxol inhibited translation of the ER alpha mRNA. This effect is also transcript specific since taxol did not alter total protein synthesis and did not affect the concentration of progesterone receptor protein in the cell. The overall result of taxol treatment was to decrease the concentration of ER alpha protein in the MCF-7 cells. Evidence is presented that the effects of taxol on ER alpha gene transcription may be mediated through the induction of p53.

Free access
SV Angeloni
Search for other papers by SV Angeloni in
Google Scholar
PubMed
Close
,
MB Martin
Search for other papers by MB Martin in
Google Scholar
PubMed
Close
,
P Garcia-Morales
Search for other papers by P Garcia-Morales in
Google Scholar
PubMed
Close
,
MD Castro-Galache
Search for other papers by MD Castro-Galache in
Google Scholar
PubMed
Close
,
JA Ferragut
Search for other papers by JA Ferragut in
Google Scholar
PubMed
Close
, and
M Saceda
Search for other papers by M Saceda in
Google Scholar
PubMed
Close

The results presented here demonstrate that p53 upregulates estrogen receptor-alpha (ER alpha) expression in the human breast cancer cell line MCF-7. Two approaches were used to alter the activity of p53 in the cells. In the first approach, stable transfectants expressing an antisense p53 were established. In the stable clones, expression of antisense p53 resulted in a decrease in the expression of ER alpha protein. In the second approach, MCF-7 cells were transiently transfected with wild-type p53. Overexpression of p53 increased the amount of ER alpha. To determine whether the effects of p53 on the expression of ER alpha were due to changes in transcription, deletion mutants of the ER alpha promoter were used. This experimental approach demonstrated that p53 up-regulates ER alpha gene expression by increasing transcription of the gene through elements located upstream of promoter A. Transfection assays using p53 mutants further demonstrated that the p53-induced increase in ER alpha gene transcription was not dependent on the ability of p53 to bind to DNA but on its ability to interact with other proteins.

Free access
H J Novaira Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by H J Novaira in
Google Scholar
PubMed
Close
,
D S Ornellas Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by D S Ornellas in
Google Scholar
PubMed
Close
,
T M Ortiga-Carvalho Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by T M Ortiga-Carvalho in
Google Scholar
PubMed
Close
,
X M Zhang Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by X M Zhang in
Google Scholar
PubMed
Close
,
J Souza-Menezes Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by J Souza-Menezes in
Google Scholar
PubMed
Close
,
S E Guggino Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by S E Guggino in
Google Scholar
PubMed
Close
,
W B Guggino Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by W B Guggino in
Google Scholar
PubMed
Close
, and
M M Morales Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949-900 Rio de Janeiro, Brazil
Department of Medicine-Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

Search for other papers by M M Morales in
Google Scholar
PubMed
Close

The cystic fibrosis transmembrane conductance regulator (CFTR) is one of the most intensively investigated Cl channels. Different mutations in the CFTR gene cause the disease cystic fibrosis (CF). CFTR is expressed in the apical membrane of various epithelial cells including the intestine. The major organ affected in CF patients is the lung, but it also causes an important dysfunction of intestinal ion transport. The modulation of CFTR mRNA expression by atrial natriuretic peptide (ANP) was investigated in rat proximal colon and in human intestinal CaCo-2 cells by RNase protection assay and semi-quantitative reverse transcriptase PCR techniques. Groups of rats subjected to volume expansion or intravenous infusion of synthetic ANP showed respective increases of 60 and 50% of CFTR mRNA expression in proximal colon. CFTR mRNA was also increased in cells treated with ANP, reaching a maximum effect at 10−9 M ANP, probably via cGMP. ANP at 10−9 M was also able to stimulate both the CFTR promoter region (by luciferase assay) and protein expression in CaCo-2 cells (by Western blot and immunoprecipitation/phosphorylation). These results suggested the involvement of ANP, a hormone involved with extracellular volume, in the expression of CFTR in rat proximal colon and CaCo-2 intestinal cells.

Free access
MA Luque
Search for other papers by MA Luque in
Google Scholar
PubMed
Close
,
N Gonzalez
Search for other papers by N Gonzalez in
Google Scholar
PubMed
Close
,
L Marquez
Search for other papers by L Marquez in
Google Scholar
PubMed
Close
,
A Acitores
Search for other papers by A Acitores in
Google Scholar
PubMed
Close
,
A Redondo
Search for other papers by A Redondo in
Google Scholar
PubMed
Close
,
M Morales
Search for other papers by M Morales in
Google Scholar
PubMed
Close
,
I Valverde
Search for other papers by I Valverde in
Google Scholar
PubMed
Close
, and
ML Villanueva-Penacarrillo
Search for other papers by ML Villanueva-Penacarrillo in
Google Scholar
PubMed
Close

Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated, suggesting a role for an inositolphosphoglycan (IPG) as at least one of the possible second messengers of the GLP-1 action in human muscle.

Free access