Search Results

You are looking at 1 - 2 of 2 items for

  • Author: M Matsubara x
  • Refine by Access: All content x
Clear All Modify Search
Free access

I Sakata, T Tanaka, M Matsubara, M Yamazaki, S Tani, Y Hayashi, K Kangawa, and T Sakai

Ghrelin was recently isolated from the rat stomach as an endogenous ligand for the GH secretagogue receptor. Although it is well known that a large amount of ghrelin is produced in the gastrointestinal tract, developmental changes in ghrelin mRNA expression and differentiation of ghrelin-immunopositive (ghrelin-ip) and mRNA-expressing (ghrelin-ex) cells in the stomach have not been elucidated. In this study, we therefore investigated the changes in ghrelin mRNA expression levels and in the numbers of ghrelin-ip and -ex cells in the stomachs of 1- to 8-week-old male and female rats by Northern blot analysis, immunohistochemistry and in situ hybridization. Northern blot analysis showed that the level of weak ghrelin mRNA expression was low in the postnatal period but then increased in a dimorphic pattern, i.e. transient stagnation at 4 weeks in the male rats and at 5 weeks in the female rats. The number of ghrelin-ip and ghrelin-ex cells also increased after birth, and more numerous ghrelin cells were found in female rats than in male rats, and this finding was confirmed by Northern blot analysis. Ghrelin-ip and -ex cells first appeared in the glandular base of the fundic gland and then they were found in the glandular base and the glandular neck at 3 weeks of age, suggesting that the distribution of ghrelin cells is extended from the glandular base to the glandular neck during the postneonatal development period. This is the first report on detailed changes in postneonatal ghrelin expression level and in the number of ghrelin cells in the rat stomach. The sexual dimorphism of ghrelin expression and ghrelin cell differentiation suggest that ghrelin plays an important physiological role in the stomach.

Free access

Brenton T Laing, Khoa Do, Tomoko Matsubara, David W Wert, Michael J Avery, Erin M Langdon, Donghai Zheng, and Hu Huang

Exercise plays a critical role in regulating glucose homeostasis and body weight. However, the mechanism of exercise on metabolic functions associated with the CNS has not been fully understood. C57BL6 male mice (n=45) were divided into three groups: normal chow diet, high-fat diet (HFD) treatment, and HFD along with voluntary running wheel exercise training for 12 weeks. Metabolic function was examined by the Comprehensive Lab Animal Monitoring System and magnetic resonance imaging; phenotypic analysis included measurements of body weight, food intake, glucose and insulin tolerance tests, as well as insulin and leptin sensitivity studies. By immunohistochemistry, the amount changes in the phosphorylation of signal transducer and activator of transcription 3, neuronal proliferative maker Ki67, apoptosis positive cells as well as pro-opiomelanocortin (POMC)-expressing neurons in the arcuate area of the hypothalamus was identified. We found that 12 weeks of voluntary exercise training partially reduced body weight gain and adiposity induced by an HFD. Insulin and leptin sensitivity were enhanced in the exercise training group verses the HFD group. Furthermore, the HFD-impaired POMC-expressing neuron is remarkably restored in the exercise training group. The restoration of POMC neuron number may be due to neuroprotective effects of exercise on POMC neurons, as evidenced by altered proliferation and apoptosis. In conclusion, our data suggest that voluntary exercise training improves metabolic symptoms induced by HFD, in part through protected POMC-expressing neuron from HFD and enhanced leptin signaling in the hypothalamus that regulates whole-body energy homeostasis.