Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M Nishiyama x
Clear All Modify Search
Free access

T Taguchi, T Takao, Y Iwasaki, M Nishiyama, K Asaba and K Hashimoto

Dehydroepiandrosterone (DHEA) is believed to have an anti-tumor effect, as well as anti-inflammatory, antioxidant, and anti-aging effects. To clarify the possible inhibitory action of DHEA on pituitary tumor cells, we tested the effects of DHEA, alone or in combination with the nuclear factor-κB (NF-κB) inhibitor parthenolide (PRT), on AtT20 corticotroph cell growth and function both in vitro and in vivo. We found that, in vitro, DHEA and PRT had potent inhibitory effects on pro-opiomelanocortin and NF-κB-dependent gene expression. They also suppressed the transcription activity of survivin, a representative anti-apoptotic factor, and induced apoptosis in this cell line. Furthermore, using BALB/C nude mice with xenografts of AtT20 cells in vivo, we found that the combined administration of DHEA and PRT significantly attenuated tumor growth and survivin expression. The treatment also decreased the elevated plasma corticosterone levels and ameliorated the malnutrition induced by tumor growth. Altogether, these results suggested that combined treatments of DHEA and PRT potently inhibit the growth and function of corticotroph tumor cells both in vitro and in vivo. This effect may, at least partly, be caused by the suppressive effects of these compounds, such as survivin and other inhibitor of apoptosis proteins, on NF-κB-mediated gene transcription.

Free access

Guillermo Vazquez-Anaya, Bridget Martinez, José G Soñanez-Organis, Daisuke Nakano, Akira Nishiyama and Rudy M Ortiz

Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T4) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T4 (8.0 µg/100 g BM/day × 5 weeks). T4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T4-treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T4 treatment increased the influx of T4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis.

Free access

Ruben Rodriguez, Jacqueline N Minas, Jose Pablo Vazquez-Medina, Daisuke Nakano, David G Parkes, Akira Nishiyama and Rudy M Ortiz

Obesity is associated with the inappropriate activation of the renin-angiotensin system (RAS), which increases arterial pressure, impairs insulin secretion and decreases peripheral tissue insulin sensitivity. RAS blockade reverses these detriments; however, it is not clear whether the disease state of the organism and treatment duration determine the beneficial effects of RAS inhibition on insulin secretion and insulin sensitivity. Therefore, the objective of this study was to compare the benefits of acute vs chronic angiotensin receptor type 1 (AT1) blockade started after the onset of obesity, hyperglycemia and hypertension on pancreatic function and peripheral insulin resistance. We assessed adipocyte morphology, glucose intolerance, pancreatic redox balance and insulin secretion after 2 and 11 weeks of AT1 blockade in the following groups of rats: (1) untreated Long-Evans Tokushima Otsuka (lean control; n = 10), (2) untreated Otsuka Long-Evans Tokushima Fatty (OLETF; n = 12) and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day by oral gavage; n = 12). Regardless of treatment duration, AT1 blockade decreased systolic blood pressure and fasting plasma triglycerides, whereas chronic AT1 blockade decreased fasting plasma glucose, glucose intolerance and the relative abundance of large adipocytes by 22, 36 and 70%, respectively. AT1 blockade, however, did not improve pancreatic oxidative stress or reverse impaired insulin secretion. Collectively, these data show that AT1 blockade after the onset of obesity, hyperglycemia and hypertension improves peripheral tissue insulin sensitivity, but cannot completely reverse the metabolic derangement characterized by impaired insulin secretion once it has been compromised.