Search Results
You are looking at 1 - 1 of 1 items for
- Author: M Sahun x
- Refine by access: All content x
Search for other papers by M Sahun in
Google Scholar
PubMed
Search for other papers by C Villabona in
Google Scholar
PubMed
Search for other papers by P Rosel in
Google Scholar
PubMed
Search for other papers by MA Navarro in
Google Scholar
PubMed
Search for other papers by JM Ramon in
Google Scholar
PubMed
Search for other papers by JM Gomez in
Google Scholar
PubMed
Search for other papers by J Soler in
Google Scholar
PubMed
The aim of the present study was to study salt and water metabolism in thyroid deficiency. We performed an oral water loading test (OWL) and a hypertonic 5% saline infusion test (HSI) in 16 patients with overt primary hypothyroidism before replacement treatment (PRE group) and after, in eight patients with subclinical hypothyroidism (SUB group) and in 16 normal individuals (CG group). In the PRE group, a lower free water clearance was detected in the OWL (P < 0.022), with lower plasma osmolality (OWL: P < 0.005; HSI: P < 0.001) and arginine vasopressin (AVP) (OWL: P < 0.001; HSI: P < 0.001) than the CG group, across both tests; they normalized with the replacement treatment. The same plasma abnormalities were detected in the SUB group with the HSI. Although the AVP and thirst thresholds did not differ between the groups, the lag between them was lower in the PRE (4.1+/-3.2 mOsm/kg) and SUB group (2.6+/-2.1 mOsm/kg) than in the CG group (13.3+/-9.2 mOsm/kg) (P < 0.05). There were no differences in atrial natriuretic hormone (ANH), plasma renin activity (PRA) and plasma aldosterone among the groups. These results indicate that plasma hypo-osmolality and low levels of AVP are present in primary hypothyroidism, and indeed are already present in the subclinical phase of the disease. An overlap between the thresholds of thirst and AVP seem to play a role in these abnormalities, but ANH, PRA and plasma aldosterone do not appear to contribute.