Search Results

You are looking at 1 - 4 of 4 items for

  • Author: M Theodoropoulou x
Clear All Modify Search
Free access

J Trojan, M Theodoropoulou, KH Usadel, GK Stalla and L Schaaf

Enhanced sialylation of thyrotropin (TSH) prolongs its metabolic clearance rate and thus increases the hormone's in vivo bioactivity. This has been shown for hypothyroid rats and for recombinant human TSH, but there are few data on the sialylation of human serum TSH. The aim of this work was to further study sialylated human serum TSH, its precursors bearing terminal galactose residues, and the role of pharmacological doses of thyrotropin-releasing hormone (TRH) on their secretion under different degrees of primary hypothyroidism. We analyzed serum TSH in patients with subclinical (n = 9) and overt primary hypothyroidism (n = 13) compared with euthyroid individuals (n = 12) and human standard pituitary TSH (IRP 80/558). Blood was drawn before and 30 min after intravenous administration of 200 micrograms TRH, and TSH was purified by immunoaffinity concentration. The content of sialylated (sialo-) TSH and isoforms bearing terminal galactose (Gal-TSH, asialo-Gal-TSH) was measured by Ricinus communis (RCA 120) affinity chromatography in combination with enzymatic cleavage of sialic acid residues. TSH immunoreactivity was measured by an automated second generation TSH immunoassay. Pituitary TSH contained 16.5 +/- 0.8% Gal-TSH. In euthyroid individuals the proportion of Gal-TSH was 14.6 +/- 1.9%, whereas TSH in patients with subclinical and overt primary hypothyroidism contained 23.9 +/- 3.5% (P < 0.05 vs euthyroid individuals) and 21.1 +/- 1.7% Gal-TSH respectively. The mean ratio of asialo-Gal TSH was 23.8 +/- 0.6% for pituitary TSH, 35.7 +/- 4.2% in euthyroid individuals, 48.0 +/- 3.3% in patients with subclinical, and 61.5 +/- 3.8% (P < 0.001 vs euthyroid individuals) in patients with overt primary hypothyroidism. For pituitary TSH the calculated proportion of sialo-TSH was 6.5 +/- 0.2%, for euthyroid individuals 20.3 +/- 2.8%, for patients with subclinical hypothyroidism 24.1 +/- 3.0%, and for patients with overt primary hypothyroidism 40.7 +/- 3.0% (P < 0.001 vs euthyroid individuals). The proportions of Gal-TSH, asialo-Gal-TSH, and sialo-TSH did not differ significantly before and after TRH administration in the individuals studied. Our data show that patients with subclinical and overt primary hypothyroidism have a markedly increased proportion of serum TSH isoforms bearing terminal galactose and sialic acid residues, which may represent a mechanism for the further stimulation of thyroid function. Pharmacological doses of TRH cause an increased quantity of TSH to be released, but do not significantly alter the proportion of sialylated or terminally galactosylated TSH isoforms.

Free access

L Schaaf, M Theodoropoulou, A Gregori, A Leiprecht, J Trojan, J Klostermeier and GK Stalla

Thyrotropin (TSH) is secreted not as one distinct hormone, but rather as a group of isohormones which differ in their oligosaccharide composition. Although the mechanisms regulating TSH glycosylation are not fully understood, there is strong evidence that TRH plays an important role. The aim of our study was to determine the dynamic influence of TRH on TSH microheterogeneity. Sera were obtained from euthyroid volunteers (n=20) before and 30, 60, 120, 180 and 240 min after intravenous, nasal and oral administration of TRH in three independent runs (randomized order, at a time-interval of 3 weeks between each run). TSH was immuno-concentrated and analysed by isoelectric focusing (IEF) and lentil lectin affinity chromatography. TSH immunoreactivity was measured by an automated second-generation TSH immunoassay. Overall, serum TSH concentrations reached maximal values 30 min after intravenous, 60 min after nasal and 180 min after oral TRH stimulation. IEF analysis revealed 63.3+/-3.3% of pituitary standard TSH (IRP 80/558) in the neutral pH range (8>pH>6). In contrast, 30 min after TRH stimulation 80.8+/-3.7% (P<0.001) and 60 min after TRH stimulation 44.9+/-2.2% (P<0.001) of the TSH of euthyroid probands were found in this pH range, whereas 180 min after TRH stimulation 58.4+/-2.3% (P<0.001) were detected in the acidic pH range (pH<6). This shift of TSH composition in euthyroidism after TRH stimulation was confirmed by lentil lectin analysis of TSH: core-fucose content of euthyroid TSH was 73.4+/-3.8% 30 min and 22.9+/-3.2% 120 min after TRH stimulation in contrast to basal (53.3+/-1.8%; P<0.001) and pituitary standard (IRP 80/558) TSH (63.0+/-0.9%; P<0.001). In conclusion, in euthyroidism, TRH stimulation time-dependently changes the distribution pattern of the TSH isoforms from an alkaline and neutral to a more acidic one. This corresponds to the secretion of isohormones with altered bioactivity which could influence the fine-tuning of thyroid function.

Free access

M Theodoropoulou, T Arzberger, Y Gruebler, Z Korali, P Mortini, W Joba, AE Heufelder, GK Stalla and L Schaaf

Thyrotrophin (TSH) synthesis and secretion is under the positive control of thyrotrophin releasing hormone and under the negative control of the thyroid hormones. However, it is hypothesised that TSH has a direct effect on the regulation of its own synthesis through an intrapituitary loop mediated by pituitary TSH receptors (TSH-R). The aim of this investigation was to study the expression of TSH-R in normal human pituitary at mRNA and protein levels, and to compare the pattern of protein expression between different pituitary adenomas. Using RT-PCR we were able to detect TSH-R mRNA in the normal pituitary, and immunohistochemical studies showed TSH-R protein expression in distinct areas of the anterior pituitary. Double immunostaining with antibodies against each of the intrapituitary hormones and S100 revealed that TSH-R protein is present in thyrotrophs and folliculostellate cells. Examination of 58 pituitary adenomas, including two clinically active and two clinically inactive thyrotroph adenomas, revealed TSH-R immunopositivity in only the two clinically inactive thyrotroph adenomas. This study shows, for the first time, the presence of TSH-R protein in the normal anterior pituitary and in a subset of thyrotroph adenomas. The expression of TSH-R in the thyrotroph and folliculostellate cell subpopulations provides preliminary evidence of a role for TSH in autocrine and paracrine regulatory pathways within the anterior pituitary gland.

Free access

M Theodoropoulou, T Arzberger, Y Gruebler, M L Jaffrain-Rea, J Schlegel, L Schaaf, E Petrangeli, M Losa, G K Stalla and U Pagotto

The oncogenic effects of epidermal growth factor (EGF) have long been established. EGF receptor (EGFr) is overexpressed in many types of tumors and constitutes a target for cancer treatment. The pituitary gland is a target of EGF action and it is very likely that EGFr plays a role in pituitary tumor formation and progression. However, there is a controversy in the literature concerning EGFr expression in the different types of pituitary adenomas. In the present study we investigated the expression pattern of the wild type EGFr (EGFrWT) and the constitutively active variant III (EGFrvIII) at the mRNA and protein levels in a large series of pituitary tumors. EGFrWT was found in a high percentage of hormone-secreting tumors, but only in a small fraction of non-functioning pituitary adenomas, while no expression of the EGFrvIII could be detected by nested RT-PCR in any tumor. Among the hormone-secreting adenomas, the highest incidence of EGFr expression was found in Cushing’s pituitary adenomas. Furthermore, immunohistochemistry for the phosphorylated EGFr revealed the presence of activated EGFr in most Cushing’s adenomas, compared with most pituitary adenomas. Taking into account that downregulation of p27/Kip1 plays a significant role in corticotrope tumorigenesis and that EGFr mitogenic signaling results in decreased p27/Kip1, we searched for a correlation between EGFr expression and p27/Kip1 levels in corticotropinomas. Low p27/Kip1 immunoreactivity was observed in corticotropinomas expressing EGFr. On the other hand, somatotropinomas expressing EGFr had high p27/Kip1 immunoreactivity. These data suggest a corticotrope-specific phenomenon and indicate that EGFr may have a role in the unbalanced growth of corticotrope tumoral cells.