Search Results
You are looking at 1 - 2 of 2 items for
- Author: M Tomita x
- Refine by access: All content x
Search for other papers by Y Itoh in
Google Scholar
PubMed
Search for other papers by S Imamura in
Google Scholar
PubMed
Search for other papers by K Yamamoto in
Google Scholar
PubMed
Search for other papers by Y Ono in
Google Scholar
PubMed
Search for other papers by M Nagata in
Google Scholar
PubMed
Search for other papers by T Kobayashi in
Google Scholar
PubMed
Search for other papers by T Kato in
Google Scholar
PubMed
Search for other papers by M Tomita in
Google Scholar
PubMed
Search for other papers by A Nakai in
Google Scholar
PubMed
Search for other papers by M Itoh in
Google Scholar
PubMed
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Endothelin-1 (ET-1) concentrations are increased in patients with diabetes mellitus, particularly those with diabetic retinopathy, or essential hypertension. We hypothesized that ET-1 might participate in the development and progression of diabetic microangiopathy. In this study, the effects of the angiotensin converting enzyme (ACE) inhibitor, enalapril maleate, on diabetic angiopathy were examined in streptozotocin (STZ)-induced diabetic (STZ-DM) rats by monitoring variations in renal function and ET-1 concentrations in blood and organ tissues. Significant increases in kidney weight and in concentrations of urinary albumin, N-acetyl-fl-d-glucosamidase (NAG) and serum ET-1 were observed in the STZ-DM rats as compared with the non-diabetic rats, and the concentration of ET-1 in the kidneys tended to be increased. Microscopic and electron microscopic analyses showed increased mesangial cell proliferation, matrix expansion and enlarged mesangial area in the kidney of the diabetic rats. After administration of the ACE inhibitor, increased concentrations of urinary albumin and NAG in the STZ-DM rats were reduced to the control values with a slight improvement in the electron microscopic changes. These data suggest that ET-1 may be involved in the development and progression of diabetic nephropathy and may explain, in part, why diabetes is liable to complicate hypertension. ACE inhibitor may help to restore diabetic nephropathy in the STZ-induced diabetic rats.
Search for other papers by K Matsumoto in
Google Scholar
PubMed
Search for other papers by R Morishita in
Google Scholar
PubMed
Search for other papers by N Tomita in
Google Scholar
PubMed
Search for other papers by A Moriguchi in
Google Scholar
PubMed
Search for other papers by K Yamasaki in
Google Scholar
PubMed
Search for other papers by M Aoki in
Google Scholar
PubMed
Search for other papers by T Nakamura in
Google Scholar
PubMed
Search for other papers by J Higaki in
Google Scholar
PubMed
Search for other papers by T Ogihara in
Google Scholar
PubMed
We have previously reported that a decrease in hepatocyte growth factor (HGF), which has many protective functions against endothelial damage by high d-glucose, might be a trigger of endothelial injury. However, the regulation of vascular HGF in diabetes mellitus (DM) has not been clarified in vivo, although vascular disease is frequently observed in DM patients. In addition, our previous report revealed that a prostaglandin I(2) (PGI(2)) analogue prevented endothelial cell death through the induction of vascular HGF production in cultured human epithelial cells. Thus, in this study, we examined the effects of a PGI(2) analogue in the regulation of the local HGF system using DM rats. A PGI(2) analogue (beraprost sodium; 300 and 600 micro g/kg per day) or vehicle was administered to 16-week-old DM rats induced by administration of streptozotocin for 28 days. Endothelial function was evaluated by the vasodilator response to acetylcholine, and the expression of vascular HGF mRNA was measured by Northern blotting. Of importance, expression of HGF mRNA was significantly decreased in the blood vessels of DM rats as compared with non-DM (P<0.01). In addition, the in vitro vasodilator response of the abdominal aorta to acetylcholine was markedly impaired in DM rats. Importantly, the vasodilator response was restored by PGI(2) treatment in a dose-dependent manner (P<0.01), whereas N(omega)-nitro-l-arginine methyl ester inhibited the restoration of endothelial function. Of particular interest, vascular HGF mRNA and protein were significantly increased in the blood vessels of DM rats treated with PGI(2) as compared with vehicle. Similarly, an increase in HGF protein was also confirmed by immunohistochemical analysis. In addition, the specific HGF receptor, c-met, was also increased by PGI(2) treatment. Overall, this study demonstrated that treatment with a PGI(2) analogue restored endothelial dysfunction in DM rats, accompanied by the induction of vascular HGF and c-met expression. Increased local vascular HGF production by a PGI(2) analogue may prevent endothelial injury, potentially resulting in the improvement of endothelial dysfunction.