Search Results

You are looking at 1 - 3 of 3 items for

  • Author: M. F. CHENG x
  • Refine by access: All content x
Clear All Modify Search
J. BALTHAZART
Search for other papers by J. BALTHAZART in
Google Scholar
PubMed
Close
,
J. D. BLAUSTEIN
Search for other papers by J. D. BLAUSTEIN in
Google Scholar
PubMed
Close
,
M. F. CHENG
Search for other papers by M. F. CHENG in
Google Scholar
PubMed
Close
, and
H. H. FEDER
Search for other papers by H. H. FEDER in
Google Scholar
PubMed
Close

A cytoplasmic progestin receptor has been characterized in the brain of castrated ring doves using an in-vitro assay that measures the binding of a synthetic progestin, [3H]17α,21-dimethyl-19-nor-pregna-4,9-diene-3,20-dione(promegestone; R5020). The affinity of the receptor was similar in both the hyperstriatum and the hypothalamus (K d≃4 × 10−10 mol/l). Its concentration was higher in the anterior hypothalamus–preoptic area (63 ± 4 fmol/mg (s.e.m.) protein) than in other brain regions (posterior hypothalamus, 33 ± 5; hyperstriatum, 28 ± 3; midbrain, 17 ± 4 fmol/mg protein; n = 7). Progesterone and R5020 competed well for binding but oestradiol and 5β-dihydrotestosterone did not. Corticosterone and, to a lesser extent, testosterone and 5α-dihydrotestosterone competed for binding but much higher concentrations were required than for progestins. Injections of testosterone (200 pg testosterone propionate daily for 7 days) significantly increased the concentration of progestin receptors in the anterior and posterior hypothalamus without having any significant effect on other brain areas. Shorter treatment, lasting for 2 days, with testosterone propionate (200 μg daily), 5α-dihydrotestosterone (200 μg daily) or oestradiol benzoate (50 μg daily) did not always cause this increase but seven injections of oestradiol benzoate (50 pg daily for 7 days) were even more effective than seven injections of testosterone propionate (200 μg daily for 7 days). These data suggested that the sensitivity to progesterone of the brain of the bird changes as a consequence of increases in the level of testosterone in the circulation.

Restricted access
Michelle W M Li Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Michelle W M Li in
Google Scholar
PubMed
Close
,
Weiliang Xia Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Weiliang Xia in
Google Scholar
PubMed
Close
,
Dolores D Mruk Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Dolores D Mruk in
Google Scholar
PubMed
Close
,
Claire Q F Wang Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Claire Q F Wang in
Google Scholar
PubMed
Close
,
Helen H N Yan Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Helen H N Yan in
Google Scholar
PubMed
Close
,
Michelle K Y Siu Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Michelle K Y Siu in
Google Scholar
PubMed
Close
,
Wing-yee Lui Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Wing-yee Lui in
Google Scholar
PubMed
Close
,
Will M Lee Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by Will M Lee in
Google Scholar
PubMed
Close
, and
C Yan Cheng Population Council, 1230 York Avenue, New York 10021, USA
Department of Zoology, The University of Hong Kong, Hong Kong, China

Search for other papers by C Yan Cheng in
Google Scholar
PubMed
Close

The timely restructuring of the blood–testis barrier (BTB) that facilitates the migration of preleptotene and leptotene spermatocytes from the basal to the adluminal compartment in the seminiferous epithelium of adult rat testes, which occurs at late stage VII through early stage VIII of the epithelial cycle, is a crucial cellular event of spermatogenesis. However, the regulation of BTB dynamics at the biochemical level remains elusive. In this study, tumor necrosis factor α (TNFα), a secretory product of Sertoli and germ cells in rat testes, was shown to affect junction dynamics in vivo. Following an acute administration of recombinant TNFα directly to adult rat testes in vivo at 0.5 and 2 μg/testis (with a body weight ~300 g), this treatment significantly and transiently disrupted the BTB. It also transiently inhibited the steady-state protein levels of occludin, zonula occludens-1, and N-cadherin, but not junction adhesion molecule-A, α-, and β-catenin in testes at the BTB site as illustrated by immunoblottings, immunohistochemistry, electron microscopy, and fluorescent microscopy. This transient disruption of the BTB integrity induced by TNFα treatment was further demonstrated by a functional test to assess the passage of a fluorescent dye (e.g. fluorescein-5-isothiocyanate) from the systemic circulation to the adluminal compartment. Additionally, both the phosphorylated-Ser/Thr protein kinase activated by MAP kinase kinase (p-p38) and phosphorylated-externally regulated kinase (p-ERK) mitogen -activated protein kinase-signaling pathways were transiently activated. Collectively, these data coupled with the recently published in vitro studies have illustrated that the BTB is likely utilizing a novel mechanism in which localized production of TNFα by Sertoli and germ cells into the microenvironment at the basal compartment facilitates the timely restructuring (‘opening’?) of the BTB during spermatogenesis to facilitate germ cell migration.

Free access
Pearl P Y Lie Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Pearl P Y Lie in
Google Scholar
PubMed
Close
,
Weiliang Xia Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Weiliang Xia in
Google Scholar
PubMed
Close
,
Claire Q F Wang Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Claire Q F Wang in
Google Scholar
PubMed
Close
,
Dolores D Mruk Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Dolores D Mruk in
Google Scholar
PubMed
Close
,
Helen H N Yan Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Helen H N Yan in
Google Scholar
PubMed
Close
,
Ching-hang Wong Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Ching-hang Wong in
Google Scholar
PubMed
Close
,
Will M Lee Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by Will M Lee in
Google Scholar
PubMed
Close
, and
C Yan Cheng Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10021, USA
Department of Zoology, University of Hong Kong, Hong Kong, China

Search for other papers by C Yan Cheng in
Google Scholar
PubMed
Close

In adult rat testes, blood–testis barrier (BTB) restructuring facilitates the migration of preleptotene spermatocytes from the basal to the adluminal compartment that occurs at stage VIII of the epithelial cycle. Structural proteins at the BTB must utilize an efficient mechanism (e.g. endocytosis) to facilitate its transient ‘opening’. Dynamin II, a large GTPase known to be involved in endocytosis, was shown to be a product of Sertoli and germ cells in the testis. It was also localized to the BTB, as well as the apical ectoplasmic specialization (apical ES), during virtually all stages of the epithelial cycle. By co-immunoprecipitation, dynamin II was shown to associate with occludin, N-cadherin, zonula occludens-1 (ZO-1), β-catenin, junctional adhesion molecule-A, and p130Cas, but not nectin-3. An in vivo model in rats previously characterized for studying adherens junction (AJ) dynamics in the testes by adjudin (formerly called AF-2364, 1-(2,4-dichlorobenzyl)-1H-indazole-3-car-hohydrizide) treatment was used in our studies. At the time of germ cell loss from the seminiferous epithelium as a result of adjudin-induced AJ restructuring without disrupting the BTB integrity, a significant decline in the steady-state dynamin II protein level was detected. This change was associated with a concomitant increase in the levels of two protein complexes at the BTB, namely occludin/ZO-1 and N-cadherin/β-catenin. Interestingly, these changes were also accompanied by a significant increase in the structural interaction of dynamin II with β-catenin and ZO-1. β-Catenin and ZO-1 are adaptors that structurally link the cadherin- and occludin-based protein complexes together at the BTB in an ‘engaged’state to reinforce the barrier function in normal testes. However, β-catenin and ZO-1 were ‘disengaged’ from each other but bound to dynamin II during adjudin-induced AJ restructuring in the testis. The data reported herein suggest that dynamin II may assist the ‘disengagement’ of β-catenin from ZO-1 during BTB restructuring. Thus, this may permit the occludin/ZO-1 complexes to maintain the BTB integrity when the cadherin/catenin complexes are dissociated to facilitate germ cell movement.

Free access