Search Results

You are looking at 1 - 4 of 4 items for

  • Author: MH Mooney x
  • Refine by Access: All content x
Clear All Modify Search
Free access

FP O'Harte, MH Mooney, CM Kelly, and PR Flatt

Gastric inhibitory polypeptide (GIP) is an important insulin-releasing hormone of the enteroinsular axis which is rapidly inactivated by the exopeptidase dipeptidyl peptidase (DPP) IV. The present study has examined the ability of Tyr(1)-glucitol GIP to be protected from plasma degradation and to enhance insulin-releasing and antihyperglycaemic activity in 20- to 25-week-old obese diabetic ob/ob mice. Degradation of GIP by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% degraded). After 6 h, more than 61% of GIP was converted to GIP(3-42) whereas N-terminally modified Tyr(1)-glucitol GIP was resistant to degradation in plasma (>99% intact after 6 h). The formation of GIP(3-42) was almost completely abolished by inhibition of plasma DPP IV with diprotin A. Effects of GIP and Tyr(1)-glucitol GIP were examined in overnight-fasted obese mice following i.p. injection of either peptide (20 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Most prominent effects were observed in the former group where plasma glucose values at 60 min together with the area under the curve (AUC) for glucose were significantly lower following GIP (AUC, 874+/-72 mmol/l.min; P<0.01) or Tyr(1)-glucitol GIP (770+/-134 mmol/l.min; P<0.001) as compared with administration of glucose alone (1344+/-136 mmol/l.min). This was associated with a significantly greater and more protracted insulin response following Tyr(1)-glucitol GIP than GIP (AUC, 491+/-118 vs 180+/-33 ng/ml.min; P<0.05). Administration of Tyr(1)-glucitol GIP also enhanced the glucose-lowering ability of 50 units/kg insulin (218.4+/-30.2 vs insulin alone 133.9+/-16.2 mmol/l.min; P<0.05). These data demonstrate that Tyr(1)-glucitol GIP displays resistance to plasma DPP IV degradation in a commonly used animal model of type 2 diabetes, resulting in enhanced antihyperglycaemic activity and insulin-releasing action in vivo.

Free access

AM McKillop, JT McCluskey, AC Boyd, MH Mooney, PR Flatt, and FP O'Harte

Previous studies have shown that glycation of insulin occurs in pancreatic beta-cells under conditions of hyperglycaemia and that the site of glycation is the N-terminal Phe(1) of the insulin B-chain. To enable evaluation of glycated insulin in diabetes, specific antibodies were raised in rabbits and guinea-pigs by using two synthetic peptides (A: Phe-Val-Asn-Gln-His-Leu-Cys-Tyr, and B: Phe-Val-Asn-Gln-His-Leu-Tyr-Lys) modified by N-terminal glycation and corresponding closely to the N-terminal sequence of the glycated human insulin B-chain. For immunization, the glycated peptides were conjugated either to keyhole limpet haemocyanin or ovalbumin using glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester or 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrochloride. Antibody titration curves, obtained using I(125)-tyrosylated tracer prepared from glycated peptide A, revealed high-titre antisera in five groups of animals immunized for 8-28 weeks. The highest titres were observed in rabbits and guinea-pigs immunized with peptide B coupled to ovalbumin using glutaraldehyde. Under radioimmunoassay conditions, these antisera exhibited effective dose (median) (ED(50)) values for glycated insulin of 0.3-15 ng/ml and 0.9-2.5 ng/ml respectively, with negligible cross-reactivity against insulin or other islet peptides. The degree of cross-reaction with glycated proinsulin was approximately 50%. Glycated insulin in plasma of control and hydrocortisone-treated diabetic rats measured using rabbit 3 antiserum (1:10 000 dilution; sensitivity <19 pg/ml) was 0. 08+/-0.01 and 1.5+/-0.6 ng/ml (P<0.01), corresponding to 4 and 16% of total circulating insulin concentration respectively. Immunocytochemistry studies of the pancreas of streptozotocin-treated diabetic rats using a 1:1000 dilution of guinea-pig 2 antiserum revealed clusters of fluorescent positively stained cells in islets. These studies document the successful production of polyclonal antisera specific for glycated insulin and their usefulness in radioimmunoassays and immunocytochemistry. The demonstration of glycated insulin in plasma and islets of animal models of diabetes supports the view that glycation of insulin is involved in the pathogenesis of this disease.

Free access

VA Gault, PR Flatt, P Harriott, MH Mooney, CJ Bailey, and FP O'Harte

The therapeutic potential of glucagon-like peptide-1 (GLP-1) in improving glycaemic control in diabetes has been widely studied, but the potential beneficial effects of glucose-dependent insulinotropic polypeptide (GIP) have until recently been almost overlooked. One of the major problems, however, in exploiting either GIP or GLP-1 as potential therapeutic agents is their short duration of action, due to enzymatic degradation in vivo by dipeptidylpeptidase IV (DPP IV). Therefore, this study examined the plasma stability, biological activity and antidiabetic potential of two novel NH2-terminal Ala2-substituted analogues of GIP, containing glycine (Gly) or serine (Ser). Following incubation in plasma, (Ser2)GIP had a reduced hydrolysis rate compared with native GIP, while (Gly2)GIP was completely stable. In Chinese hamster lung fibroblasts stably transfected with the human GIP receptor, GIP, (Gly2)GIP and (Ser2)GIP stimulated cAMP production with EC(50) values of 18.2, 14.9 and 15.0 nM respectively. In the pancreatic BRIN-BD11 beta-cell line, (Gly2)GIP and (Ser2)GIP (10(-8) M) evoked significant increases (1.2- and 1.5-fold respectively; P<0.01 to P<0.001) in insulinotropic activity compared with GIP. In obese diabetic ob/ob mice, both analogues significantly lowered (P<0.001) the glycaemic excursion in response to i.p. glucose. This enhanced glucose-lowering ability was coupled to a significantly raised (P<0.01) and more protracted insulin response compared with GIP. These data indicate that substitution of the penultimate Ala2 in GIP by Gly or Ser confers resistance to plasma DPP IV degradation, resulting in enhanced biological activity, therefore raising the possibility of their use in the treatment of type 2 diabetes.

Free access

BD Green, MH Mooney, VA Gault, N Irwin, CJ Bailey, P Harriott, B Greer, FP O'Harte, and PR Flatt

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC(50) values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC(50) 0.37 nM). Similarly, both analogues stimulated cAMP production with EC(50) values of 16.3 and 27 nM respectively compared with GLP-1 (EC(50) 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P<0.05 to P<0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes.