Search Results

You are looking at 1 - 2 of 2 items for

  • Author: MH Vickers x
  • Refine by Access: All content x
Clear All Modify Search
Free access

MH Vickers, BA Ikenasio, and BH Breier

The discovery of a link between an adverse in utero environment and the propensity to develop metabolic and cardiovascular disease in adult life is one of the most important advances in epidemiological research of recent Years. Increasing experimental evidence suggests that alterations in the fetal environment may have long-term consequences for the development of metabolic disorders in adult life. This process has been termed 'fetal programming' and we have shown that undernutrition of the mother during gestation leads to development of the metabolic syndrome X during adult life. Striking metabolic similarities exist between syndrome X and untreated GH deficiency (GHD). In the present study we have investigated the effects of GH treatment on blood pressure and metabolic parameters. Virgin Wistar rats (age 75+/-5 days, n=20 per group) were time-mated and randomly assigned to receive food either ad libitum (AD) or 30% of AD intake (UN) throughout pregnancy. At weaning, male offspring were assigned to one of two diets (control or hypercaloric (30% fat)). Systolic blood pressure was measured at day 100 and following twice daily treatment with recombinant bovine GH for 21 days. GH treatment increased body weights in all treated animals but significantly reduced retroperitoneal and gonadal fat pad weights. Following GH treatment, systolic blood pressure was markedly decreased in all UN offspring. Saline-treated animals showed no change in systolic blood pressure over the treatment period. GH treatment increased heart-to-body weight ratio in all GH-treated animals. Our data demonstrated that GH treatment reduces hypertension and improves cardiovascular function in animals exposed to adverse environmental conditions during fetal or postnatal life.

Free access

MH Vickers, S Reddy, BA Ikenasio, and BH Breier

Obesity and its related disorders are the most prevalent health problems in the Western world. Using the paradigm of fetal programming we developed a rodent model which displays the phenotype of obesity and metabolic disorders commonly observed in human populations. We apply maternal undernutrition throughout gestation, generating a nutrient-deprived intrauterine environment to induce fetal programming. Maternal undernutrition results in fetal growth retardation and in significantly decreased body weight at birth. Programmed offspring develop hyperphagia, obesity, hypertension, hyperleptinemia and hyperinsulinism during adult life and postnatal hypercaloric nutrition amplifies the metabolic abnormalities induced by fetal programming. The adipoinsular axis has been proposed as a primary candidate for linking the status of body fat mass to the function of the pancreatic beta-cells. We therefore investigated the relationship between circulating plasma concentrations of leptin and insulin and immunoreactivity in the endocrine pancreas for leptin and leptin receptor (OB-R) in genetically normal rats that were programmed to become obese during adult life. Virgin Wistar rats were time mated and randomly assigned to receive food either available ad libitum (AD group) or at 30% of the ad libitum available intake (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring (AD 6.13+/-0.04 g, UN 4.02+/-0.03 g, P<0.001). At weaning, offspring were assigned to one of two diets (a standard control diet or a hypercaloric diet consisting of 30% fat) for the remainder of the study. At the time of death (125 days of age), UN offspring had elevated (P<0.005) fasting plasma insulin (AD control 1.417+/-0.15 ng/ml, UN control 2.493+/-0.33 ng/ml, AD hypercaloric 1.70+/-0.17 ng/ml, UN hypercaloric 2.608+/-0.41 ng/ml) and leptin (AD control 8.8+/-1.6 ng/ml, UN control 14.32+/-1.9 ng/ml, AD hypercaloric 15.11+/-1.8 ng/ml, UN hypercaloric 30.18+/-5.3 ng/ml) concentrations, which were further increased (P<0.05) by postnatal hypercaloric nutrition. The elevated plasma insulin and leptin concentrations were paralleled by increased immunolabeling for leptin in the peripheral cells of the pancreatic islets. Dual immunofluorescence histochemistry for somatostatin and leptin revealed that leptin was co-localized in the pancreatic delta-cells. OB-R immunoreactivity was evenly distributed throughout the pancreatic islets and was not changed by programming nor hypercaloric nutrition. Our data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.