Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Margit Klier x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Mathias Fasshauer, Johannes Klein, Susan Kralisch, Margit Klier, Ulrike Lossner, Matthias Bluher, and Ralf Paschke

A chronic increase in systemic levels of acute-phase reactants contributes to the development of insulin resistance and associated disorders such as cardiovascular disease. Recently, serum amyloid A3 (SAA3) has been characterized as an adipocyte-secreted acute-phase reactant, expression of which is dramatically increased in insulin resistance and obesity. To further clarify expression and regulation of this adipocytokine in fat, SAA3 mRNA was measured by quantitative real-time reverse transcriptase PCR during differentiation of 3T3-L1 adipocytes and after treatment with various hormones known to induce insulin resistance and contribute to atherosclerosis. SAA3 mRNA was dramatically induced up to 77-fold during differentiation of 3T3-L1 preadipocytes. Furthermore, 100 nM dexamethasone and 30 ng/ml interleukin (IL)-6 induced SAA3 mRNA by up to 11- and 4.8-fold, respectively, in a time-dependent fashion with significant stimulation observed at concentrations as low as 10 nM dexamethasone and 1 ng/ml IL-6. In contrast, insulin, isoproterenol and growth hormone did not influence SAA3 synthesis. Inhibitor studies suggested that the positive effect of IL-6 on SAA3 expression is at least in part mediated by Janus kinase 2. Taken together, our results show a differential regulation of SAA3 by glucocorticoids and IL-6 supporting an integrative role of this acute-phase reactant in the pathogenesis of insulin resistance and its link to obesity and cardiovascular disease.