Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Maria Moreno x
Clear All Modify Search
Free access

Giuseppe Calamita, Maria Moreno, Domenico Ferri, Elena Silvestri, Patrizia Roberti, Luigi Schiavo, Patrizia Gena, Maria Svelto and Fernando Goglia

The recent identification of aquaporin-8 (AQP8), an aquaporin (AQP) channel permeable to water and ammonia, in the inner membrane (IMM) of rat liver mitochondria suggested a role for such AQP in the hydration state and the metabolic function of mitochondria. Since thyroid hormone triiodothyronine (T3) is known to modulate both the shape and the metabolic activities of liver mitochondria, it was interesting to investigate the expression and distribution of AQP8 as well as the osmotic water permeability of the IMM in liver mitochondria from rats in different thyroid states. By semi-quantitative reverse transcriptase (RT)-PCR, when compared with the euthyroid counterpart, the levels of hepatic AQP8 mRNA significantly increased in the hypothyroid state, whereas they were strongly decreased after administration of T3. A similar pattern was seen at the protein level by immunoblotting mitochondrial membranes. The upregulation of mitochondrial AQP8 in the hypothyroid liver was confirmed by immunogold electron microscopy. Stopped-flow light scattering with IMM vesicles showed no significant differences in terms of osmotic water permeability among the IMMs in the various thyroid states. Overall, our data indicate that the T3 modulation of the AQP8 gene is a rapid downregulation of transcription. Modulation of hepatic AQP8 expression may be relevant to the regulation of mitochondrial metabolism by thyroid hormones.

Free access

Bernardo Nuche-Berenguer, Daniel Lozano, Irene Gutiérrez-Rojas, Paola Moreno, María L Mariñoso, Pedro Esbrit and María L Villanueva-Peñacarrillo

Increased fat mass contributes to bone deterioration. Glucagon-like peptide 1 (GLP-1) and its related peptide exendin 1–39 amide (Ex-4), two lipid-lowering peptides, exert osteogenic effects in diabetic states. We examined the actions of 3-day administration of GLP-1 or Ex-4 on bone remodeling markers and on bone mass and structure in hyperlipidic (HL) and hypercaloric rats. Wistar rats on a hyperlipidemic diet for 35 days were subcutaneously administered GLP-1 (0.86 nmol/kg per h), Ex-4 (0.1 nmol/kg per h), or saline (control) by continuous infusion for 3 days. After killing, tibiae were removed for total RNA and protein isolation, as well as femurs and L1–L4 vertebrae for bone mass and quality assessment. Body weight and plasma insulin were unaltered in HL rats, which showed osteopenia (by dual-energy X-ray absorptiometry), associated with hyperglycemia, hypertriglyceridemia, and hypercholesterolemia. GLP-1 or Ex-4 administration decreased the levels of glucose, triglycerides, and total cholesterol in plasma but increased osteocalcin (OC) gene expression and the osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) ratio – at the expense of an augmented OPG – above corresponding control values in the tibia. Each tested peptide similarly reversed the decreased femoral and vertebral bone mass in these rats, whereas the deteriorated trabecular structure in the vertebrae improved associated with normalization of bone remodeling. These findings demonstrate that GLP-1 and Ex-4 are similarly efficient in reversing the bone alterations in this HL rat model, which has proven to be useful for studying the fat–bone relationships.

Free access

Adriana María Belén Abiuso, Esperanza Berensztein, Romina María Pagotto, Elba Nora Pereyra, Vanina Medina, Diego José Martinel Lamas, Marcos Besio Moreno, Omar Pedro Pignataro and Carolina Mondillo

The histamine H4 receptor (HRH4), discovered only 13 years ago, is considered a promising drug target for allergy, inflammation, autoimmune disorders and cancer, as reflected by a steadily growing number of scientific publications and patent applications. Although the presence of HRH4 has been evidenced in the testis, its specific localization or its role has not been established. Herein, we sought to identify the possible involvement of HRH4 in the regulation of Leydig cell function. We first evaluated its expression in MA-10 Leydig tumor cells and then assessed the effects of two HRH4 agonists on steroidogenesis and proliferation. We found that HRH4 is functionally expressed in MA-10 cells, and that its activation leads to the inhibition of LH/human chorionic gonadotropin-induced cAMP production and StAR protein expression. Furthermore, we observed decreased cell proliferation after a 24-h HRH4 agonist treatment. We then detected for the sites of HRH4 expression in the normal rat testis, and detected HRH4 immunostaining in the Leydig cells of rats aged 7–240 days, while 21-day-old rats also presented HRH4 expression in male gametes. Finally, we evaluated the effect of HRH4 activation on the proliferation of normal progenitor and immature rat Leydig cell culture, and both proved to be susceptible to the anti-proliferative effect of HRH4 agonists. Given the importance of histamine (2-(1H-imidazol-4-yl)ethanamine) in human (patho)physiology, continued efforts are directed at elucidating the emerging properties of HRH4 and its ligands. This study reveals new sites of HRH4 expression, and should be considered in the design of selective HRH4 agonists for therapeutic purposes.

Free access

Alejandro Ibáñez-Costa, Esther Rivero-Cortés, Mari C Vázquez-Borrego, Manuel D Gahete, Luis Jiménez-Reina, Eva Venegas-Moreno, Andrés de la Riva, Miguel Ángel Arráez, Inmaculada González-Molero, Herbert A Schmid, Silvia Maraver-Selfa, Inmaculada Gavilán-Villarejo, Juan Antonio García-Arnés, Miguel A Japón, Alfonso Soto-Moreno, María A Gálvez, Raúl M Luque and Justo P Castaño

Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient’s response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca2+ signaling ([Ca2+]i), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca2+]i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca2+]i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response.