Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Maria Sörhede Winzell x
  • Refine by access: All content x
Clear All Modify Search
Bo Ahrén
Search for other papers by Bo Ahrén in
Google Scholar
PubMed
Close
,
Maria Sörhede Winzell
Search for other papers by Maria Sörhede Winzell in
Google Scholar
PubMed
Close
, and
Giovanni Pacini Department of Clinical Sciences, Metabolic Unit, Lund University, BMC B11, SE-221 84 Lund, Sweden

Search for other papers by Giovanni Pacini in
Google Scholar
PubMed
Close

To study whether the incretin effect is involved in adaptively increased insulin secretion in insulin resistance, glucose was infused at a variable rate to match glucose levels after oral glucose (25 mg) in normal anesthetized C57BL/6J female mice or in mice rendered insulin resistant by 8 weeks of high-fat feeding. Insulin response was markedly higher after oral than i.v. glucose in both groups, and this augmentation was even higher in high-fat fed than normal mice. In normal mice, the area under the curve (AUCinsulin) was augmented from 4.0±0.8 to 8.0±1.8 nmol/l×60 min by the oral glucose, i.e. by a factor of 2 (P=0.023), whereas in the high-fat fed mice, AUCinsulin was augmented from 0.70±0.4 to 12.4±2.5 nmol/l×60 min, i.e. by a factor of 17 (P<0.001). To examine whether the incretin hormone glucagon-like peptide-1 (GLP-1) is responsible for this difference, the effect of i.v. GLP-1 was compared in normal and high-fat fed mice. The sensitivity to i.v. GLP-1 in stimulating insulin secretion was increased in the high-fat diet fed mice: the lowest effective dose of GLP-1 was 650 pmol/kg in normal mice and 13 pmol/kg in the high-fat diet fed mice. We conclude that 1) the incretin effect contributes by ∼50% to insulin secretion by the oral glucose in normal mice, 2) this effect is markedly exaggerated in insulin-resistant mice fed a high-fat diet, and 3) this augmented incretin contribution in the high-fat fed mice may partially be explained by GLP-1.

Free access