Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Masa-aki Hattori x
  • Refine by access: All content x
Clear All Modify Search
Pei-Jian He Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Search for other papers by Pei-Jian He in
Google Scholar
PubMed
Close
,
Masami Hirata Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Search for other papers by Masami Hirata in
Google Scholar
PubMed
Close
,
Nobuhiko Yamauchi Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Search for other papers by Nobuhiko Yamauchi in
Google Scholar
PubMed
Close
, and
Masa-aki Hattori Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Search for other papers by Masa-aki Hattori in
Google Scholar
PubMed
Close

It has been established that estrogen can alter circadian rhythms in behavior and endocrine physiology in rodents. The uterus is a reproductive organ that is critically dependent on regulation by ovarian steroids. Here, we examined the expression of Per1 in different compartments of the uterus, and explored whether the ovarian steroids could regulate Per1 expression employing ovariectomized rat uterus. RT-PCR analysis showed that Per1 was cyclically expressed in the uterus. As revealed by in situ hybridization, the staining intensity of Per1 mRNA was stronger at ZT 8 than at ZT 0 in the uterine luminal epithelium (LE), stroma (S), and myometrium (M) compartments, but was not changed in the glandular epithelium (GE). Both in situ hybridization and immunofluorescence analyses revealed that estradiol (E2) administration induced high expression of Per1 in the LE, GE, and M, and less expression in the S compartment. Progesterone (P4) treatment resulted in an obvious enhancement of Per1 expression in the LE, GE, and S, but unchanged in the M compartment. Furthermore, the E2- and P4-activated Per1 expression was significantly repressed by their respective antagonists, ICI182 780 and RU486. These findings were further supported by RT-PCR analysis of Per1 expression in cultured uterine stromal cells. Collectively, the present data indicate that E2 and P4 might be involved in modification of circadian rhythm via direct regulation of the expression of clock genes.

Free access
Pei-Jian He Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Molecular Medicine Research Labs, Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka 21, Tsukuba-shi, Ibaraki 305-8585, Japan

Search for other papers by Pei-Jian He in
Google Scholar
PubMed
Close
,
Masami Hirata Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Molecular Medicine Research Labs, Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka 21, Tsukuba-shi, Ibaraki 305-8585, Japan

Search for other papers by Masami Hirata in
Google Scholar
PubMed
Close
,
Nobuhiko Yamauchi Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Molecular Medicine Research Labs, Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka 21, Tsukuba-shi, Ibaraki 305-8585, Japan

Search for other papers by Nobuhiko Yamauchi in
Google Scholar
PubMed
Close
,
Seiichi Hashimoto Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Molecular Medicine Research Labs, Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka 21, Tsukuba-shi, Ibaraki 305-8585, Japan

Search for other papers by Seiichi Hashimoto in
Google Scholar
PubMed
Close
, and
Masa-aki Hattori Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Molecular Medicine Research Labs, Drug Discovery Research, Astellas Pharma Inc., Miyukigaoka 21, Tsukuba-shi, Ibaraki 305-8585, Japan

Search for other papers by Masa-aki Hattori in
Google Scholar
PubMed
Close

The circadian clock, regulating hormonal secretion and metabolisms in accordance with the environmental light–dark cycle, resides in almost all peripheral tissues as well as in the superchiasmatic nucleus. Clock gene expression has been found to be noncyclic during spermatogenesis and the differentiation of thymocytes. However, currently little is known about how cell differentiation could affect circadian clockwork. We performed this study using the in vitro real-time oscillation monitoring system to examine the clockwork in several types of differentiating cells originated from reproductive tissues of transgenic rats (constructed with Period gene 2 (Per2) promoter-destabilized luciferase reporter gene). After treatment with dexamethasone (DXM), persistent oscillation of Per2 expression was observed in both gonadotropin-induced and pregnant ovarian luteal cells, proliferative uterine stromal cells (USCs), and nondifferentiating testicular interstitial cells, with a cyclic period of ~24 h. In contrast to these cell types, only one cycle of oscillation was sustained in granulosa cells undergoing differentiation. Additionally, Per2 oscillation was irregular in USCs undergoing decidualization induced by medroxyprogesterone acetate plus N6, 2-O-dibutyryl adenosine 3′:5′-cyclic monophosphate. Furthermore, no oscillation of Per2 expression was evoked by DXM in Leydig cells and thymocytes. In conclusion, the present study characterized the oscillation of Per2 gene expression in several types of ovarian, uterine, and testicular cells, and it is strongly suggested that circadian clockwork is affected during cellular differentiation.

Free access