Search Results
You are looking at 1 - 1 of 1 items for
- Author: Masanobu Kawai x
- Refine by access: All content x
Search for other papers by Victoria E DeMambro in
Google Scholar
PubMed
Search for other papers by Masanobu Kawai in
Google Scholar
PubMed
Search for other papers by Thomas L Clemens in
Google Scholar
PubMed
Search for other papers by Keertik Fulzele in
Google Scholar
PubMed
Search for other papers by Jane A Maynard in
Google Scholar
PubMed
Search for other papers by Caralina Marín de Evsikova in
Google Scholar
PubMed
Search for other papers by Kenneth R Johnson in
Google Scholar
PubMed
Search for other papers by Ernesto Canalis in
Google Scholar
PubMed
Search for other papers by Wesley G Beamer in
Google Scholar
PubMed
Search for other papers by Clifford J Rosen in
Google Scholar
PubMed
Search for other papers by Leah Rae Donahue in
Google Scholar
PubMed
A spontaneous mouse mutant, designated ‘small’ (sml), was recognized by reduced body size suggesting a defect in the IGF1/GH axis. The mutation was mapped to the chromosome 1 region containing Irs1, a viable candidate gene whose sequence revealed a single nucleotide deletion resulting in a premature stop codon. Despite normal mRNA levels in mutant and control littermate livers, western blot analysis revealed no detectable protein in mutant liver lysates. When compared with the control littermates, Irs1 sml /Irs1 sml (Irs1 sml/sml ) mice were small, lean, hearing impaired; had 20% less serum IGF1; were hyperinsulinemic; and were mildly insulin resistant. Irs1 sml/sml mice had low bone mineral density, reduced trabecular and cortical thicknesses, and low bone formation rates, while osteoblast and osteoclast numbers were increased in the females but not different in the males compared with the Irs1 +/+ controls. In vitro, Irs1 sml/sml bone marrow stromal cell cultures showed decreased alkaline phosphatase-positive colony forming units (pre-osteoblasts; CFU-AP+) and normal numbers of tartrate-resistant acid phosphatase-positive osteoclasts. Irs1 sml/sml stromal cells treated with IGF1 exhibited a 50% decrease in AKT phosphorylation, indicative of defective downstream signaling. Similarities between engineered knockouts and the spontaneous mutation of Irs1 sml were identified as well as significant differences with respect to heterozygosity and gender. In sum, we have identified a spontaneous mutation in the Irs1 gene associated with a major skeletal phenotype. Changes in the heterozygous Irs1 + /sml mice raise the possibility that similar mutations in humans are associated with short stature or osteoporosis.