Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Masaya Takeda x
  • Refine by access: All content x
Clear All Modify Search
Hiroyuki Otani
Search for other papers by Hiroyuki Otani in
Google Scholar
PubMed
Close
,
Fumio Otsuka
Search for other papers by Fumio Otsuka in
Google Scholar
PubMed
Close
,
Masaya Takeda
Search for other papers by Masaya Takeda in
Google Scholar
PubMed
Close
,
Tomoyuki Mukai
Search for other papers by Tomoyuki Mukai in
Google Scholar
PubMed
Close
,
Tomohiro Terasaka
Search for other papers by Tomohiro Terasaka in
Google Scholar
PubMed
Close
,
Tomoko Miyoshi
Search for other papers by Tomoko Miyoshi in
Google Scholar
PubMed
Close
,
Kenichi Inagaki
Search for other papers by Kenichi Inagaki in
Google Scholar
PubMed
Close
,
Jiro Suzuki
Search for other papers by Jiro Suzuki in
Google Scholar
PubMed
Close
,
Toshio Ogura
Search for other papers by Toshio Ogura in
Google Scholar
PubMed
Close
,
Mark A Lawson Department of Medicine and Clinical Science, Department of Reproductive Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan

Search for other papers by Mark A Lawson in
Google Scholar
PubMed
Close
, and
Hirofumi Makino
Search for other papers by Hirofumi Makino in
Google Scholar
PubMed
Close

Recent studies have shown that bone morphogenetic proteins (BMPs) are important regulators in the pituitary–gonadal endocrine axis. We here investigated the effects of BMPs on GNRH production controlled by estrogen using murine GT1-7 hypothalamic neuron cells. GT1-7 cells expressed estrogen receptor α (ERα; ESR1 as listed in MGI Database), ERβ (ESR2 as listed in MGI Database), BMP receptors, SMADs, and a binding protein follistatin. Treatment with BMP2 and BMP4 had no effect on Gnrh mRNA expression; however, BMP6 and BMP7 significantly increased Gnrh mRNA expression as well as GnRH production by GT1-7 cells. Notably, the reduction of Gnrh expression caused by estradiol (E2) was restored by cotreatment with BMP2 and BMP4, whereas it was not affected by BMP6 or BMP7. E2 activated extracellular signal-regulated kinase (ERK) 1/2 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling but did not activate p38-mitogen-activated protein kinase (MAPK) signaling in GT1-7 cells. Inhibition of ERK1/ERK2 reversed the inhibitory effect of estrogen on Gnrh expression, whereas SAPK/JNK inhibition did not affect the E2 actions. Expression levels of Erα and Erβ were reduced by BMP2 and BMP4, but were increased by BMP6 and BMP7. Treatment with an ER antagonist inhibited the E2 effects on Gnrh suppression including reduction of E2-induced ERK phosphorylation, suggesting the involvement of genomic ER actions in Gnrh suppression. BMP2 and BMP4 also suppressed estrogen-induced phosphorylation of ERK1/ERK2 and SAPK/JNK signaling, suggesting that BMP2 and BMP4 downregulate estrogen effects by attenuating ER–MAPK signaling. Considering that BMP6 and BMP7 increased the expression of α1E-subunit of R-type calcium channel (Cacna1e), which is critical for GNRH secretion, it is possible that BMP6 and BMP7 directly stimulate GNRH release by GT1-7 cells. Collectively, a newly uncovered interaction of BMPs and ER may be involved in controlling hypothalamic GNRH production and secretion via an autocrine/paracrine mechanism.

Free access
Masaya Takeda Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Masaya Takeda in
Google Scholar
PubMed
Close
,
Fumio Otsuka Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Fumio Otsuka in
Google Scholar
PubMed
Close
,
Hiroyuki Otani Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Hiroyuki Otani in
Google Scholar
PubMed
Close
,
Kenichi Inagaki Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Kenichi Inagaki in
Google Scholar
PubMed
Close
,
Tomoko Miyoshi Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Tomoko Miyoshi in
Google Scholar
PubMed
Close
,
Jiro Suzuki Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Jiro Suzuki in
Google Scholar
PubMed
Close
,
Yukari Mimura Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Yukari Mimura in
Google Scholar
PubMed
Close
,
Toshio Ogura Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Toshio Ogura in
Google Scholar
PubMed
Close
, and
Hirofumi Makino Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Hirofumi Makino in
Google Scholar
PubMed
Close

Involvement of peroxisome proliferator-activated receptor-γ (PPAR-γ ) activation and bone morphogenetic protein (BMP) signaling in regulating cell proliferation and hormonal production of pituitary tumors has been reported, although the underlying mechanism remains poorly understood. Here, we investigated regulatory roles of PPARα and PPARγ in gonadotropin transcription and cell mitosis modulated by pituitary activin/BMP systems using a mouse gonadotropinoma cell line Lβ T2, which expresses activin/BMP receptors, transcription factor Smads, PPARα , and PPARγ . In Lβ T2 cells, BMP signaling shown by Smad1/5/8 phosphorylation and Id-1 transcription was readily activated by BMPs. A PPARγ agonist, pioglitazone significantly reduced BMP-induced DNA synthesis by Lβ T2; whereas the PPARα agonist, fenofibric acid, did not. In accordance with the effects on cell mitosis, pioglitazone but not fenofibric acid significantly decreased BMP-induced Id-1-Luc activation. Neither fenofibric acid nor pioglitazone affected activin signaling detected by (CAGA)9-Luc activity. Both PPARα and PPARγ ligands directly suppressed transcriptional activities of FSHβ , LHβ , and GnRHR. Activation of PPARα and PPARγ increased mRNA levels of follistatin, but did not affect the expression of follistatin-related gene. Thus, PPAR agonists not only directly suppress gonadotropin transcription and BMP signaling, but also inhibit the biological actions of activins which facilitate gonadotropin transcription through upregulating follistatin expression. In addition, pioglitazone increased BMP ligands mRNA, but decreased activin-β B mRNA in Lβ T2 cells. Collectively, PPAR activation differentially regulates gonadotrope cell proliferation and gonadotropin transcription in a ligand-dependent manner.

Free access