Search Results

You are looking at 1 - 4 of 4 items for

  • Author: McNeilly JR x
  • Refine by Access: All content x
Clear All Modify Search
Free access

L Nicol, McNeilly JR, M Stridsberg, JL Crawford, and AS McNeilly

The granin proteins secretogranin II (SgII) and chromogranin A (CgA) are commonly found associated with LH and/or FSH within specialised secretory granules in gonadotroph cells, and it is possible that they play an important role in the differential secretion of the gonadotrophins. In this study we have examined the regulation of the biosynthesis and secretion of SgII and CgA, in relation to LH secretion, in the LbetaT2 mouse pituitary gonadotroph cell line. Three experiments were carried out to investigate the effects of oestradiol (E2) and dexamethasone (Dex) in the presence and absence of GnRH (experiment 1), differing GnRH concentrations (experiment 2) and alterations in GnRH pulse frequency (experiment 3). In experiment 1, exposure to E2, Dex or E2+Dex, either with or without GnRH treatment, resulted in increased LH secretion. Steroids alone had no effect on LHbeta mRNA levels, but in the presence of GnRH LHbeta mRNA levels were increased in Dex- and E2+Dex-treated cells. GnRH receptor (GnRH-R) mRNA levels were up-regulated by Dex and E2+Dex, but were unaffected by GnRH. There were no steroid-induced changes in SgII or CgA mRNA, but increased levels of CgA mRNA were observed after GnRH treatment in cells cultured in the presence of Dex. In experiment 2, increasing concentrations of GnRH resulted in increases in LH secretion that were inversely dose-dependent. No changes in LHbeta, GnRH-R or SgII mRNA levels were observed, but there were dose-dependent increases in CgA mRNA levels. In experiment 3, GnRH was given as either 1 pulse/day or 4 pulses/day for 3 days. Both pulse regimes resulted in increased LH, SgII and CgA secretion compared with controls during the first 15 min pulse on day 3. Exposure to GnRH at 4 pulses/day increased LH and SgII secretion compared with controls during all 4 pulses, but secretion of both proteins was reduced during pulses 2-4 compared with pulse 1. CgA secretion also increased due to GnRH in pulse 1, but was decreased by GnRH treatment during pulse 2, and unchanged by GnRH during pulses 3 and 4. Total daily secretion of LH and SgII from cells given 1 pulse/day of GnRH increased compared with controls on all three treatment days, while total CgA secretion increased in response to GnRH on days 2 and 3 only. Intracellular levels of SgII, but not LH, decreased after GnRH treatment. In contrast, intracellular CgA was increased, but only after 4 pulses/day of GnRH. Levels of LHbeta, but not SgII, mRNA were increased by both pulse regimes, while CgA mRNA levels increased after 1 pulse/day of GnRH. These results indicate that there is a close correlation between the GnRH-stimulated release of LH and SgII from LbetaT2 cells, suggesting that SgII may have an influential role in the regulated secretion of LH, possibly by inducing LH aggregation to facilitate trafficking into secretory granules. CgA secretion does not appear to be closely associated with that of LH, but CgA expression does appear to be regulated by GnRH, which may indicate involvement in the control of LH secretion, possibly by influencing the proportion of LH in the different types of secretory granules.

Free access

Davis JR, RF McMahon, PR Lowenstein, MG Castro, GA Lincoln, and AS McNeilly

Gene therapy for pituitary disease requires evaluation for safety as well as efficacy. We have reported results of adenovirus-mediated gene transfer using the sheep as a large animal model that allows longitudinal evaluation of hormone secretion and have confirmed high levels of transgene expression up to 7 days after direct stereotaxic injection into the pituitary gland. Here we report the results of detailed histological examination of the pituitary glands from animals injected with two recombinant adenoviruses expressing the beta-galactosidase marker gene, or with saline vehicle to control for the potential tissue-disruptive effect of the injection volume itself. Pituitaries injected with saline showed no evidence of inflammatory response apart from occasional minor foci of apoptosis. In all other respects they were indistinguishable from normal uninjected control pituitary glands. Glands injected with recombinant adenoviruses containing either the hCMV-beta-gal or the hPRL-beta-gal transgene, on the other hand, displayed variable degrees of inflammatory response, with periglandular fibrosis, lymphocytic infiltrate and venulitis in almost all cases. Focal necrosis and/or apoptosis was noted in six of nine cases. In summary, we have found evidence of severe inflammatory reaction within the first seven days of adenovirus injection, amounting to significant hypophysitis. The histological extent of this reaction has not previously been recognised by studies of the efficacy of gene transfer in rodents, and was underestimated by immunocytochemical studies of hormone and transgene expression. The findings emphasise the need for careful evaluation of the safety of endocrine gene therapy, and for caution with the dose of vector used.

Restricted access

H. M. Fraser, M. Abbott, N. C. Laird, A. S. McNeilly, J. J. Nestor Jr, and B. H. Vickery


The role of the pituitary gonadotrophins in controlling luteal function in the stumptailed macaque has been investigated by examining profiles of serum concentrations of LH, FSH, progesterone and oestradiol in daily blood samples from 13 monkeys during the menstrual cycle, and in blood samples taken at hourly intervals between 09.00 and 21.00 h on different days of the luteal phase in 13 cycles. The effects of acute withdrawal of gonadotrophins was investigated by administering a single injection of 300 μg LHRH antagonist/kg body weight at different stages of the luteal phase during 28 cycles.

Although there were high basal values and marked fluctuations of bioactive LH during the first 4 days after the LH peak, progesterone profiles showed no corresponding short-term changes, there being a slow and steady rise in progesterone concentrations during the sampling periods. After day 5, basal LH secretion decreased, but high amplitude LH pulses were identified which were associated with episodes of progesterone secretion.

Administration of the LHRH antagonist caused a suppression of bioactive LH and progesterone concentrations at all stages of the luteal phase, although some basal secretion of progesterone was maintained through the 24-h period of effective antagonist gonadotroph blockade. Luteal function recovered apparently normally in all monkeys treated in the early–mid-luteal phase.

Serum concentrations of FSH and oestradiol fluctuated comparatively less during the 12-h sampling periods, and the antagonist had less suppressive effects on the concentrations of these hormones. The LHRH antagonist had no apparent effect on prolactin release.

It appears that the corpus luteum is relatively unresponsive to the high serum LH concentrations during the early luteal phase, but that responsiveness increases as the corpus luteum develops. The corpus luteum is, however, susceptible to withdrawal of LH not only in the mid–late luteal phase when the relationship with LH is apparent, but also during the early luteal phase.

J. Endocr. (1986) 111, 83–90

Restricted access

S. G. Hillier, E. J. Wickings, P. T. K. Saunders, A. F. Dixson, S. Shimasaki, I. A. Swanston, L. E. Reichert Jr, and A. S. McNeilly


In-vitro data from experiments on rats implicate granulosa cells as primary sites of hormone-dependent ovarian inhibin biosynthesis, but no equivalent data exist for primates. We have used the common marmoset (Callithrix jacchus) to investigate inhibin biosynthesis in primate granulosa cells in vitro and to determine its relationship to preovulatory follicular development. To relate the production of immunoactive inhibin to follicular maturity, we studied primary granulosa cell cultures from follicles at progressive stages of preovulatory development. Granulosa cells from 'large' (≥2·0 mm diameter) follicles expressed high rates of inhibin production and steroidogenesis (progesterone), and were positively regulated by human (h)LH in vitro. Less mature granulosa cells from 'medium' (1·1–1·9 mm) and 'small' (≤ 1·0 mm) follicles expressed proportionately lower rates of inhibin production and steroidogenesis, but each parameter was stimulated in a dose- and time-dependent manner by hFSH in vitro. The stimulatory action of hFSH on immunoactive inhibin was augmented by the presence of testosterone or oestradiol; testosterone (but not oestradiol) also augmented the steroidogenic response to hFSH. Marmoset luteal tissue also produced inhibin in vitro and expressed an ∼1·5 kb inhibin α-subunit mRNA, confirming the corpus luteum as a source of ovarian inhibin in primates.

These results provide direct experimental evidence that primate granulosa cells produce inhibin. They suggest that production of inhibin by immature granulosa cells is initially induced by FSH and subject to modulation by follicular steroids. During advanced preovulatory development, granulosa cell inhibin production becomes directly responsive to LH, thereby indicating a role for LH in the control of peri- and postovulatory inhibin secretion by the primate ovary.

Journal of Endocrinology (1989) 123, 65–73