Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Mei Wang x
  • Refine by access: All content x
Clear All Modify Search
Miao Hou Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Miao Hou in
Google Scholar
PubMed
Close
,
Chenlin Ji Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Chenlin Ji in
Google Scholar
PubMed
Close
,
Jing Wang Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Jing Wang in
Google Scholar
PubMed
Close
,
Yanhua Liu Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Yanhua Liu in
Google Scholar
PubMed
Close
,
Bin Sun Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Bin Sun in
Google Scholar
PubMed
Close
,
Mei Guo Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Mei Guo in
Google Scholar
PubMed
Close
,
Jonas Burén Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Jonas Burén in
Google Scholar
PubMed
Close
, and
Xiaonan Li Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China
Departments of, Child Health Care, General Surgery, Institute of Pediatric Research, Department of Public Health and Clinical Medicine, Nanjing Children's Hospital, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, People's Republic of China

Search for other papers by Xiaonan Li in
Google Scholar
PubMed
Close

Early life nutrition is important in the regulation of metabolism in adulthood. We studied the effects of different fatty acid composition diets on adiposity measures, glucose tolerance, and peripheral glucocorticoid (GC) metabolism in overfed neonatal rats. Rat litters were adjusted to a litter size of three (small litters (SLs)) or ten (normal litters (NLs)) on postnatal day 3 to induce overfeeding or normal feeding respectively. After weaning, SL and NL rats were fed a ω6 polyunsaturated fatty acid (PUFA) diet (14% calories as fat, soybean oil) or high-saturated fatty acid (high-fat; 31% calories as fat, lard) diet until postnatal week 16 respectively. SL rats were also divided into the third group fed a ω3 PUFA diet (14% calories as fat, fish oil). A high-fat diet induced earlier and/or more pronounced weight gain, hyperphagia, glucose intolerance, and hyperlipidemia in SL rats compared with NL rats. In addition, a high-fat diet increased 11β-hsd1 (Hsd11b1) mRNA expression and activity in the retroperitoneal adipose tissue of both litter groups compared with standard chow counterparts, whereas high-fat feeding increased hepatic 11β-hsd1 mRNA expression and activity only in SL rats. SL and a high-fat diet exhibited significant interactions in both retroperitoneal adipose tissue and hepatic 11β-HSD1 activity. Dietary ω3 PUFA offered protection against glucose intolerance and elevated GC exposure in the retroperitoneal adipose tissue and liver of SL rats. Taken together, the results suggest that dietary fatty acid composition in the post-sucking period may interact with neonatal feeding and codetermine metabolic alterations in adulthood.

Free access
Xuanchun Wang Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Xuanchun Wang in
Google Scholar
PubMed
Close
,
Wei Gong Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Wei Gong in
Google Scholar
PubMed
Close
,
Yu Liu Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Yu Liu in
Google Scholar
PubMed
Close
,
Zhihong Yang Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Zhihong Yang in
Google Scholar
PubMed
Close
,
Wenbai Zhou Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Wenbai Zhou in
Google Scholar
PubMed
Close
,
Mei Wang Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Mei Wang in
Google Scholar
PubMed
Close
,
Zhen Yang Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Zhen Yang in
Google Scholar
PubMed
Close
,
Jie Wen Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Jie Wen in
Google Scholar
PubMed
Close
, and
Renming Hu Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China

Search for other papers by Renming Hu in
Google Scholar
PubMed
Close

We report the identification of a novel secreted peptide, INM02. The mRNA transcript of human INM02 gene is about 3.0 kb. Its open-reading frame contains 762 bps and encodes a protein of 254 amino acids. Northern blot analysis demonstrates that INM02 mRNA is widely expressed in rat tissues, especially with abundant quantities in pancreatic islets, testis, and bladder tissue. We have expressed recombinant INM02 protein and generated rabbit anti-INM02 polyclonal antibodies. We show here that INM02 could be detectable in human serum by ELISA. We also present evidence that INM02 mRNA expression could be regulated by glucose. Experiments on both MIN6 cells and intact isolated islets demonstrate that INM02 mRNA levels are increased more than threefold by high glucose (25 mM) when compared with low glucose (5.5 mM). ELISA analysis shows that secretion of INM02 is significantly augmented by high glucose in vitro. It is speculated that as a novel secreted protein, INM02 is associated with functions of pancreatic islets, especially of β-cells.

Free access
Shu-Fang Xia Wuxi School of Medicine, Jiangnan University, Wuxi, China
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China

Search for other papers by Shu-Fang Xia in
Google Scholar
PubMed
Close
,
Xiao-Mei Duan State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
Shandong Sport Training Center, Jinan, China

Search for other papers by Xiao-Mei Duan in
Google Scholar
PubMed
Close
,
Xiang-Rong Cheng State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China

Search for other papers by Xiang-Rong Cheng in
Google Scholar
PubMed
Close
,
Li-Mei Chen Wuxi School of Medicine, Jiangnan University, Wuxi, China

Search for other papers by Li-Mei Chen in
Google Scholar
PubMed
Close
,
Yan-Jun Kang Wuxi School of Medicine, Jiangnan University, Wuxi, China

Search for other papers by Yan-Jun Kang in
Google Scholar
PubMed
Close
,
Peng Wang COFCO Corporation Oilseeds Processing Division, Beijing, China

Search for other papers by Peng Wang in
Google Scholar
PubMed
Close
,
Xue Tang State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China

Search for other papers by Xue Tang in
Google Scholar
PubMed
Close
,
Yong-Hui Shi State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China

Search for other papers by Yong-Hui Shi in
Google Scholar
PubMed
Close
, and
Guo-Wei Le State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China

Search for other papers by Guo-Wei Le in
Google Scholar
PubMed
Close

The study was designed to investigate the possible mechanisms of hepatic microRNAs (miRs) in regulating local thyroid hormone (TH) action and ultimately different propensities to high-fat diet (HFD)-induced obesity. When obesity-prone (OP) and obesity-resistant (OR) mice were fed HFD for 7 weeks, OP mice showed apparent hepatic steatosis, with significantly higher body weight and lower hepatic TH receptor b (TRb) expression and type 1 deiodinase (DIO1) activity than OR mice. Next-generation sequencing technology revealed that 13 miRs in liver were dysregulated between the two phenotypes, of which 8 miRs were predicted to target on Dio1 or TRb. When mice were fed for 17 weeks, OR mice had mild hepatic steatosis and increased Dio1 and TRb expression than OP mice, with downregulation of T3 target genes (including Srebp1c, Acc1, Scd1 and Fasn) and upregulation of Cpt1α, Atp5c1, Cox7c and Cyp7a1. A stem-loop qRT-PCR analysis confirmed that the levels of miR-383, miR-34a and miR-146b were inversely correlated with those of DIO1 or TRb. Down-regulated expression of miR-383 or miR-146b by miR-383 inhibitor (anti-miR-383) or miR-146b inhibitor (anti-miR-146b) in free fatty acid-treated primary mouse hepatocytes led to increased DIO1 and TRb expressions, respectively, and subsequently decreased cellular lipid accumulation, while miR-34a inhibitor (anti-miR-34a) transfection had on effects on TRb expression. Luciferase reporter assay illustrated that miR-146b could directly target TRb 3′untranslated region (3′UTR). These findings suggested that miR-383 and miR-146b might play critical roles in different propensities to diet-induced obesity via targeting on Dio1 and TRb, respectively.

Free access
Jiean Xu State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Jiean Xu in
Google Scholar
PubMed
Close
,
Qiuhua Yang State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Qiuhua Yang in
Google Scholar
PubMed
Close
,
Xiaoyu Zhang State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Xiaoyu Zhang in
Google Scholar
PubMed
Close
,
Zhiping Liu State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Zhiping Liu in
Google Scholar
PubMed
Close
,
Yapeng Cao State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Yapeng Cao in
Google Scholar
PubMed
Close
,
Lina Wang State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Lina Wang in
Google Scholar
PubMed
Close
,
Yaqi Zhou State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Yaqi Zhou in
Google Scholar
PubMed
Close
,
Xianqiu Zeng State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Xianqiu Zeng in
Google Scholar
PubMed
Close
,
Qian Ma State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Qian Ma in
Google Scholar
PubMed
Close
,
Yiming Xu Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China

Search for other papers by Yiming Xu in
Google Scholar
PubMed
Close
,
Yong Wang Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China

Search for other papers by Yong Wang in
Google Scholar
PubMed
Close
,
Lei Huang Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Search for other papers by Lei Huang in
Google Scholar
PubMed
Close
,
Zhen Han Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Search for other papers by Zhen Han in
Google Scholar
PubMed
Close
,
Tao Wang Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Search for other papers by Tao Wang in
Google Scholar
PubMed
Close
,
David Stepp Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by David Stepp in
Google Scholar
PubMed
Close
,
Zsolt Bagi Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Zsolt Bagi in
Google Scholar
PubMed
Close
,
Chaodong Wu Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA

Search for other papers by Chaodong Wu in
Google Scholar
PubMed
Close
,
Mei Hong State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China

Search for other papers by Mei Hong in
Google Scholar
PubMed
Close
, and
Yuqing Huo Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA

Search for other papers by Yuqing Huo in
Google Scholar
PubMed
Close

Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.

Free access
Shuai Huang Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Shuai Huang in
Google Scholar
PubMed
Close
,
Yincong Xue Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Yincong Xue in
Google Scholar
PubMed
Close
,
Wanying Chen Department of Psychiatry, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Wanying Chen in
Google Scholar
PubMed
Close
,
Mei Xue Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Mei Xue in
Google Scholar
PubMed
Close
,
Lei Miao Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Lei Miao in
Google Scholar
PubMed
Close
,
Li Dong Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Li Dong in
Google Scholar
PubMed
Close
,
Hao Zuo Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Hao Zuo in
Google Scholar
PubMed
Close
,
Hezhi Wen Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Hezhi Wen in
Google Scholar
PubMed
Close
,
Xiong Lei Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Xiong Lei in
Google Scholar
PubMed
Close
,
Zhixiao Xu Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Zhixiao Xu in
Google Scholar
PubMed
Close
,
Meiyu Quan Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Meiyu Quan in
Google Scholar
PubMed
Close
,
Lisha Guo Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Lisha Guo in
Google Scholar
PubMed
Close
,
Yawen Zheng Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Yawen Zheng in
Google Scholar
PubMed
Close
,
Zhendong Wang Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Zhendong Wang in
Google Scholar
PubMed
Close
,
Li Yang Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Li Yang in
Google Scholar
PubMed
Close
,
Yuping Li Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Yuping Li in
Google Scholar
PubMed
Close
, and
Chengshui Chen Zhejiang Provincial Key Laboratory of Interventional Pulmonology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Department of Pulmonary and Critical Care Medicine, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China

Search for other papers by Chengshui Chen in
Google Scholar
PubMed
Close

Acute lung injury (ALI) is associated with an increased incidence of respiratory diseases, which are devastating clinical disorders with high global mortality and morbidity. Evidence confirms that fibroblast growth factors (FGFs) play key roles in mediating ALI. Mice were treated with LPS (lipopolysaccharide: 5 mg/kg, intratracheally) to establish an in vivo ALI model. Human lung epithelial BEAS-2B cells cultured in a corresponding medium with LPS were used to mimic the ALI model in vitro. In this study, we characterized FGF10 pretreatment (5 mg/kg, intratracheally) which improved LPS-induced ALI, including histopathological changes, and reduced pulmonary edema. At the cellular level, FGF10 pretreatment (10 ng/mL) alleviated LPS-induced ALI accompanied by reduced reactive oxygen species (ROS) accumulation and inflammatory responses, such as IL-1β, IL-6, and IL-10, as well as suppressed excessive autophagy. Additionally, immunoblotting and co-immunoprecipitation showed that FGF10 activated nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway via Nrf2 nuclear translocation by promoting the interaction between p62 and keap1, thereby preventing LPS-induced ALI. Nrf2 knockout significantly reversed these protective effects of FGF10. Together, FGF10 protects against LPS-induced ALI by restraining autophagy via p62-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling pathway, implying that FGF10 could be a novel therapy for ALI.

Restricted access