Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Michael Wallis x
  • Refine by access: All content x
Clear All Modify Search
Michael Wallis Biochemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK

Search for other papers by Michael Wallis in
Google Scholar
PubMed
Close

Pituitary prolactin shows an episodic pattern of molecular evolution, with occasional short bursts of rapid change imposed on a generally rather slow evolutionary rate. In mammals, episodes of rapid change occurred in the evolution of primates, cetartiodactyls, rodents and the elephant. The bursts of rapid evolution in cetartiodactyls and rodents were followed by duplications of the prolactin gene that gave rise to large families of prolactin-related proteins including placental lactogens, while in primates the burst was followed by corresponding duplications of the related GH gene. The position in elephant is less clear. Extensive data relating to the genomic sequences of elephant and two additional members of the group Afrotheria are now available, and have been used here to characterize the prolactin genes in these species and explore whether additional prolactin-related genes are present. The results confirm the rapid evolution of elephant (Loxodonta africana) prolactin – the sequence of elephant prolactin is substantially different from that predicted for the ancestral placental mammal. Hyrax (Procavia capensis) prolactin is even more divergent but tenrec (Echinops telfairi) prolactin is strongly conserved. No evidence was obtained from searches of public databases for additional genes encoding prolactin-like proteins in any of these species. Detailed analysis of evolutionary rates, and other factors, indicates that the episode of rapid change in hyrax, and probably elephant, was adaptive, though the nature of the associated biological change(s) is not clear.

Free access