Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mieke de Boer-Brouwer x
Clear All Modify Search
Free access

Karin A Slot, Marsha Voorendt, Mieke de Boer-Brouwer, Harmke H van Vugt and Katja J Teerds

In the present investigation, the localization of proteins involved in ovarian apoptosis were studied throughout the estrous cycle in the presence of fluctuating hormone levels. Fas, Fas ligand, Bcl-2, Bax and caspase-3 mRNA expression and proteins were detected in all ovarian tissue extracts, though the amount of protein varied with the phase of the estrous cycle. Fas, Bax and caspase-3 protein levels were highest at diestrus and decreased thereafter towards metestrus. In contrast, Fas ligand and Bcl-2 protein levels were lowest at diestrus and increased toward metestrus. Immunohistochemistry revealed that the staining of the anti-apoptotic protein Bcl-2 was more pronounced in healthy preantral follicles than in atretic follicles. In contrast, the pro-apoptotic proteins Fas, Fas ligand, Bax and active caspase-3 were more predominantly present in atretic follicles. In the ovarian surface epithelium (OSE), Fas, procaspase-3 and Bcl-2 immunostaining appeared independent of the phase of the estrous cycle. Fas ligand and Bax staining was detected particularly during proestrus in OSE cells surrounding the ovulatory follicles, while active caspase-3 was observed only in OSE cells at the postovulatory site during estrus. The proportion of luteal cells that stained positively for Fas, Bax and caspase-3 increased with the age of the corpus luteum, while Fas ligand and Bcl-2 immunostaining was strongest in newly formed corpora lutea and decreased thereafter. In conclusion, the components of the Fas signalling pathway were differentially expressed throughout the estrous cycle in a variety of ovarian cell types, which may correspond to hormone dependent survival mechanisms.

Free access

Katja J Teerds, Eddy Rijntjes, Margarita B Veldhuizen-Tsoerkan, Focko F G Rommerts and Mieke de Boer-Brouwer

Luteinising hormone (LH) appears to be important for the establishment of the adult-type Leydig cell population. The role of LH in the initial steps of stem Leydig cell/precursor cell differentiation is less clear. The aim of the present study was to elucidate the role of LH in the differentiation of spindle-shaped mesenchymal-like cells into Leydig cell progenitors. Interstitial cells were isolated from rat testes at three different ages reflecting different phases in development, and cultured in the presence of increasing concentrations of LH (ranging from 0.01 to 10 ng/ml). Cells were isolated from 10-day-old rats when stem Leydig cells/precursor cells are abundant; 13-day-old rats when the first 3β-hydroxysteroid dehydrogenase (3β-HSD)-positive Leydig cell progenitors have developed in the strain of rats used in this study; and 18-day-old rats just prior to the wave of progenitor proliferation. Immunohistochemistry revealed that before stem Leydig cells differentiate into progenitor cells, they acquire functional LH receptors and become precursor cells. This was confirmed by an in vivo immunohistochemical double-labelling experiment. Addition of LH to the cultures increased the percentage of LH/3β-HSD-labelled Leydig cell progenitors, while the percentage of cells solely expressing the LH receptor decreased. Cell proliferation was negligible, suggesting that the increase in 3β-HSD-positive cells is the result of precursor cell differentiation. When interstitial cells were isolated from 13-day-old rats and to a lesser extent from 10-day-old rats, a small proportion of the precursors could develop into progenitor cells independent of the presence of LH. In conclusion: before Leydig stem cells differentiate into 3β-HSD-positive progenitor cells, they acquire LH receptors and become precursor cells. LH appears to be essential, even at very low doses for the differentiation of these precursor cells into 3β-HSD-positive progenitors, although a subpopulation of precursor cells can develop into progenitors independently of LH.