Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Ming Xu x
Clear All Modify Search
Restricted access

Hui-Fang Wang, Qing-Qing Yu, Rui-Fang Zheng and Ming Xu

Cardiovascular complications of type 2 diabetes mellitus (T2DM) are associated with vascular remodeling in the arteries. Perivascular sympathetic neurons release an abundance of trophic factors to regulate vascular function via a paracrine signaling. Netrin-1, a diffusible protein that can be secreted outside the cell, is one of common signals of ‘conversation’ between nerve and vessel. The present study investigated whether netrin-1 is a novel modulator of sympathetic neurons paracrine signaling and played a critical role in vascular adventitial remodeling under T2DM. Vascular adventitial remodeling was observed in adventitial fibroblasts (AFs) responding to netrin-1 deficiency in the supernatant from primary rat superior cervical ganglia (SCG) neurons, shown as AFs proliferation, migration, and collagen deposition. Conditioned medium from the high glucose (HG)-treated SCG neurons contributed to AFs remodeling, which was effectively alleviated by exogenous netrin-1 supplementation. Further, it was found that uncoordinated-5-B (Unc5b) was mainly expressed in AFs among netrin-1 specific receptors. Treatment of netrin-1 inhibited H2O2 production derived from NADPH oxidase 4 (NOX4) through the UNC5b/CAMP/PKA signal pathway in AFs remodeling. In vivo, aorta adventitial remodeling was accompanied with the downregulation of netrin-1 in the perivascular sympathetic nerve in T2DM rats. Such abnormalities were restored by netrin-1 intervention, which was associated with the inhibition of NOX4 expression in the aorta adventitia. In conclusion, netrin-1 is a novel modulator of sympathetic neurons paracrine signaling to maintain AFs function. Vascular adventitial remodeling was aggravated by sympathetic neurons paracrine signaling under hyperglycemia, which was ameliorated by netrin-1 treatment through the UNC5b/CAMP/PKA/NOX4 pathway.

Free access

Tong Sun, Wen-Bo Deng, Hong-Lu Diao, Hua Ni, Yu-Yan Bai, Xing-Hong Ma, Li-Bin Xu and Zeng-Ming Yang

Prostaglandin (PGE) 2 is the most common prostanoid and plays an important role in female reproduction. The aim of this study was to examine the expression and regulation of microsomal (m) PGE synthase (PGES)-1 and cytosolic (c) PGES in the mouse ovary during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and immunohistochemistry. Both mPGES-1 mRNA signals and immunostaining were localized in the granulosa cells, but not in the thecal cells and oocytes. cPGES mRNA signals were localized in both granulosa cells and oocytes, whereas cPGES immunostaining was exclusively localized in the oocytes. In our superovulated model of immature mice, there was a basal level of mPGES-1 mRNA signals in the granulosa cells at 48 h after equine chorionic gonadotropin (eCG) treatment. mPGES-1 mRNA level was induced by human chorionic gonadotropin (hCG) treatment for 0.5 h, whereas mPGES-1 immunostaining was slightly induced at 0.5 h after hCG treatment and reached a maximal level at 3 h after hCG treatment. eCG treatment had no obvious effects on either cPGES mRNA signals or immunostaining. A strong level of cPGES immunostaining was present in both unstimulated and eCG-treated groups. Both mPGES-1 mRNA signals and immunostaining were highly detected in the corpus luteum 2 days post-hCG injection and declined from days 3 to 7 post-hCG injection. cPGES immunostaining was at a basal level or not detectable from days 1 to 7 after hCG injection and was highly expressed in the corpus luteum from days 9 to 15 post-hCG injection. PGE2 biosynthesized through the mPGES-1 pathway may be important for follicular development, ovulation and luteal formation.

Restricted access

Jessica L Pierce, Ke-Hong Ding, Jianrui Xu, Anuj K Sharma, Kanglun Yu, Natalia del Mazo Arbona, Zuleika Rodríguez-Santos, Paul J Bernard, Wendy B Bollag, Maribeth H Johnson, Mark W Hamrick, Dana L Begun, Xing-Ming Shi, Carlos M Isales and Meghan E McGee-Lawrence

Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (Nr3c1; hereafter abbreviated as GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to WT mice under both ad libitum feeding and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further decrease in bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the β-adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone–hypothalamus–pituitary–adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and β-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.