Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Morag Young x
Clear All Modify Search
Free access

Timothy J Cole and Morag J Young

The mineralocorticoid receptor (MR) mediates the actions of two important adrenal corticosteroid hormones, aldosterone and cortisol. The cell signalling roles of the MR in vivo have expanded enormously since the cloning of human MR gene 30 years ago and the first MR gene knockout in mice nearly 20 years ago. Complete ablation of the MR revealed important roles postnatally for regulation of kidney epithelial functions, with MR-null mice dying 1–2 weeks postnatally from renal salt wasting and hyperkalaemia, with elevated plasma renin and aldosterone. Generation of tissue-selective MR-deficient mice using Cre recombinase-LoxP gene targeting has made it possible to analyse mice lacking MR only in specific cell types. Targeting renal-specific MR has differentiated roles in specific compartments of the kidney. Ablating MR in neurons of the forebrain reinforced important roles of the MR in response to stress, behaviour and anxiety, but suggested a minimal role in maintaining basal HPA axis tone. Deletion of the MR in macrophages and other cell types of the cardiovascular system clearly defined important roles for the regulation of cardiovascular physiology and pathophysiology. Knockdown of MR mRNA in vivo using antisense/siRNA approaches, and similarly MR overexpression, has provided useful rodent models to study physiological roles of MR signalling in vivo. More recently, targeted mutation of specific domains of the MR such as the DBD has defined genomic vs non-genomic roles in vivo. New tissue-selective MR-null models are required to define roles of MR signalling in other regions of the brain, the eye, gastrointestinal tract, lung, skin, breast and gonadal organs.

Free access

Morag J Young and Amanda J Rickard

The clinical impact of cardiovascular disease cannot be underestimated. Equally, the importance of cost-effective management of cardiac failure is a pressing issue in the face of an ageing population and the increasing incidence of metabolic disorders worldwide. Targeting the mineralocorticoid receptor (MR) offers one approach for the treatment of heart failure with current strategies for novel MR therapeutics focusing on harnessing their cardio-protective benefits, but limiting the side effects of existing agents. It is now well accepted that activation of the MR in the cardiovascular system promotes tissue inflammation and fibrosis and has negative consequences for cardiac function and patient outcomes following cardiac events. Indeed, blockade of the MR using one of the two available antagonists (spironolactone and eplerenone) provides significant cardio-protective effects in the clinical and experimental setting. Although the pathways downstream of MR that translate receptor activation into tissue inflammation, fibrosis and dysfunction are still being elucidated, a series of recent studies using cell-selective MR (NR3C2)-null or MR-overexpressing mice have offered many new insights into the role of MR in cardiovascular disease and the control of blood pressure. Dissecting the cell-specific roles of MR signalling in the heart and vasculature to identify those pathways that are critical for MR-dependent responses is an important step towards achieving cardiac-selective therapeutics. The goal of this review is to discuss recent advances in this area that have emerged from the study of tissue-selective MR-null mice, and other targeted transgenic models and their relevance to clinical disease.

Free access

Peter J Fuller, Jun Yang and Morag J Young

The cloning of the mineralocorticoid receptor (MR) 30 years ago was the start of a new era of research into the regulatory processes of MR signalling at target genes in the distal nephron, and subsequently in many other tissues. Nuclear receptor (NR) signalling is modified by interactions with coregulatory proteins that serve to enhance or inhibit the gene transcriptional responses. Over 400 coregulatory proteins have been described for the NR super family, many with functional roles in signalling, cellular function, physiology and pathophysiology. Relatively few coregulators have however been described for the MR although recent studies have demonstrated both ligand and/or tissue selectivity for MR-coregulator interactions. A full understanding of the cell, ligand and promoter-specific requirements for MR-coregulator signalling is an essential first step towards the design of small molecular inhibitors of these protein-protein interactions. Tissue-selective steroidal or non-steroidal modulators of the MR are also a desired therapeutic goal. Selectivity, as for other steroid hormone receptors, will probably depend on differential expression and recruitment of coregulatory proteins.

Free access

Peter J Fuller, Yizou Yao, Jun Yang and Morag J Young

The mineralocorticoid receptor (MR) differs from the other steroid receptors in that it responds to two physiological ligands, aldosterone and cortisol. In epithelial tissues, aldosterone selectivity is determined by the activity of 11β-hydroxysteroid dehydrogenase type 2, while in other tissues, including the heart and regions of the central nervous system, cortisol is the primary ligand for the MR where it may act as an antagonist. Clinical trials have demonstrated the potential of MR antagonists in the treatment of cardiovascular disease, though their use has been limited by concurrent hyperkalaemia. In order to better target the MR, an understanding of the structural determinants of tissue- and ligand-specific MR activation is needed. Interactions of the MR have been identified, which exhibit ligand discrimination and/or specificity. These interactions include those of the ligand-binding domain with ligand, with the N-terminal domain and with putative co-regulatory molecules. Agonist and antagonist binding have been characterised using chimeras between the human MR and the glucocorticoid receptor or the zebra fish MR together with molecular modelling. The interaction between the N-terminus and the C-terminus is aldosterone dependent but is unexpectedly antagonised by cortisol and deoxycorticosterone in the human MR. Nuclear receptor-mediated transactivation is critically dependent on, and modulated by, co-regulatory molecules. Proteins that interact with the MR in the presence of either aldosterone or cortisol, but not both, have been identified. The successful identification of ligand-specific interactions of the MR may provide the basis for the development of novel MR ligands with tissue specificity.

Restricted access

ELizabeth K Fletcher, Monica Kanki, James Morgan, David W Ray, Lea Delbridge, Peter James Fuller, Colin D Clyne and Morag Young

We previously identified a critical pathogenic role for MR activation in cardiomyocytes that included a potential interaction between the MR and the molecular circadian clock. While glucocorticoid regulation of the circadian clock is undisputed, MR interactions with circadian clock signalling are limited. We hypothesised that the MR influences cardiac circadian clock signalling, and vice versa. 10nM aldosterone or corticosterone regulated CRY 1, PER1, PER2 and ReverbA (NR1D1) gene expression patterns in H9c2 cells over 24hr. MR-dependent regulation of circadian gene promoters containing GREs and E-box sequences was established for CLOCK, Bmal, CRY 1 and CRY2, PER1 and PER2 and transcriptional activators CLOCK and Bmal modulated MR-dependent transcription of a subset of these promoters. We also demonstrated differential regulation of MR target gene expression in hearts of mice 4hr after administration of aldosterone at 8AM versus 8PM. Our data support combined MR regulation of a subset of circadian genes and that endogenous circadian transcription factors CLOCK and Bmal modulate this response. This unsuspected relationship links MR in the heart to circadian rhythmicity at the molecular level and has important implications for the biology of MR signalling in response to aldosterone as well as cortisol. These data are consistent with MR signalling in the brain where, like the heart, it preferentially responds to cortisol. Given the undisputed requirement for diurnal cortisol release in the entrainment of peripheral clocks, the present study highlights the MR as an important mechanism for transducing the circadian actions of cortisol in addition to the GR in the heart.