Search Results

You are looking at 1 - 3 of 3 items for

  • Author: N Hayakawa x
  • Refine by access: All content x
Clear All Modify Search
T Tsugawa
Search for other papers by T Tsugawa in
Google Scholar
PubMed
Close
,
R Shinohara
Search for other papers by R Shinohara in
Google Scholar
PubMed
Close
,
A Nagasaka
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Close
,
I Nakano
Search for other papers by I Nakano in
Google Scholar
PubMed
Close
,
F Takeda
Search for other papers by F Takeda in
Google Scholar
PubMed
Close
,
M Nagata
Search for other papers by M Nagata in
Google Scholar
PubMed
Close
,
N Oda
Search for other papers by N Oda in
Google Scholar
PubMed
Close
,
Y Sawai
Search for other papers by Y Sawai in
Google Scholar
PubMed
Close
,
N Hayakawa
Search for other papers by N Hayakawa in
Google Scholar
PubMed
Close
,
A Suzuki
Search for other papers by A Suzuki in
Google Scholar
PubMed
Close
, and
M Itoh
Search for other papers by M Itoh in
Google Scholar
PubMed
Close

An accelerated polyol pathway in diabetes contributes to the development of diabetic complications. To elucidate diabetic nephropathy involving also renal tubular damage, we measured urinary sorbitol concentration concomitantly with urinary N-acetyl-D-glucosaminidase (NAG) excretion in WBN-kob diabetic rats.Twenty-four-hour urinary sorbitol concentrations increased in the diabetic rats in parallel with whole blood sorbitol concentrations. An increase in 24-h urinary NAG excretion coincided with the elevated urinary sorbitol levels in the diabetic rats. The administration of epalrestat, an aldose reductase inhibitor, reduced the increased whole blood and urinary sorbitol concentrations and urinary NAG excretion concomitantly with renal aldose reductase inhibition in the diabetic rats.These results indicate that diabetic nephropathy involves distorted cell function of renal tubules, and that treatment with epalrestat may prevent at least the progress of the nephropathy.

Free access
T Mano
Search for other papers by T Mano in
Google Scholar
PubMed
Close
,
K Iwase
Search for other papers by K Iwase in
Google Scholar
PubMed
Close
,
I Yoshimochi
Search for other papers by I Yoshimochi in
Google Scholar
PubMed
Close
,
Y Sawai
Search for other papers by Y Sawai in
Google Scholar
PubMed
Close
,
N Oda
Search for other papers by N Oda in
Google Scholar
PubMed
Close
,
Y Nishida
Search for other papers by Y Nishida in
Google Scholar
PubMed
Close
,
T Mokuno
Search for other papers by T Mokuno in
Google Scholar
PubMed
Close
,
M Kotake
Search for other papers by M Kotake in
Google Scholar
PubMed
Close
,
A Nakai
Search for other papers by A Nakai in
Google Scholar
PubMed
Close
,
N Hayakawa
Search for other papers by N Hayakawa in
Google Scholar
PubMed
Close
,
R Kato
Search for other papers by R Kato in
Google Scholar
PubMed
Close
,
A Nagasaka
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Close
, and
H Hidaka
Search for other papers by H Hidaka in
Google Scholar
PubMed
Close

Abstract

Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-β-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3′,5′-nucleotide metabolic enzyme, cyclic 3′,5′-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats.

Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

Journal of Endocrinology (1995) 146, 287–292

Restricted access
T Mokuno
Search for other papers by T Mokuno in
Google Scholar
PubMed
Close
,
K Uchimura
Search for other papers by K Uchimura in
Google Scholar
PubMed
Close
,
R Hayashi
Search for other papers by R Hayashi in
Google Scholar
PubMed
Close
,
N Hayakawa
Search for other papers by N Hayakawa in
Google Scholar
PubMed
Close
,
M Makino
Search for other papers by M Makino in
Google Scholar
PubMed
Close
,
M Nagata
Search for other papers by M Nagata in
Google Scholar
PubMed
Close
,
H Kakizawa
Search for other papers by H Kakizawa in
Google Scholar
PubMed
Close
,
Y Sawai
Search for other papers by Y Sawai in
Google Scholar
PubMed
Close
,
M Kotake
Search for other papers by M Kotake in
Google Scholar
PubMed
Close
,
N Oda
Search for other papers by N Oda in
Google Scholar
PubMed
Close
,
A Nakai
Search for other papers by A Nakai in
Google Scholar
PubMed
Close
,
A Nagasaka
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Close
, and
M Itoh
Search for other papers by M Itoh in
Google Scholar
PubMed
Close

The deterioration of glucose metabolism frequently observed in hyperthyroidism may be due in part to increased gluconeogenesis in the liver and glucose efflux through hepatocyte plasma membranes. Glucose transporter 2 (GLUT 2), a facilitative glucose transporter localized to the liver and pancreas, may play a role in this distorted glucose metabolism. We examined changes in the levels of GLUT 2 in livers from rats with l-thyroxine-induced hyperthyroidism or methimazole-induced hypothyroidism by using Western blotting to detect GLUT 2. An oral glucose tolerance test revealed an oxyhyperglycemic curve (impaired glucose tolerance) in hyperthyroid rats (n=7) and a flattened curve in hypothyroid rats (n=7). GLUT 2 levels in hepatocyte plasma membranes were significantly increased in hyperthyroid rats and were not decreased in hypothyroid rats compared with euthyroid rats. The same results were obtained with a densitometric assay. These findings suggest that changes in the liver GLUT 2 concentration may contribute to abnormal glucose metabolism in thyroid disorders.

Free access