Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC(50) values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC(50) 0.37 nM). Similarly, both analogues stimulated cAMP production with EC(50) values of 16.3 and 27 nM respectively compared with GLP-1 (EC(50) 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P<0.05 to P<0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes.
Search Results
You are looking at 1 - 4 of 4 items for
- Author: N Irwin x
- Refine by Access: All content x
BD Green, MH Mooney, VA Gault, N Irwin, CJ Bailey, P Harriott, B Greer, FP O'Harte, and PR Flatt
B D Green, N Irwin, V A Gault, C J Bailey, F P M O’Harte, and P R Flatt
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic hormone proposed to play a role in both the pathophysiology and treatment of type 2 diabetes. This study has employed the GLP-1 receptor antagonist, exendin-4(9–39)amide (Ex(9–39)) to evaluate the role of endogenous GLP-1 in genetic obesity-related diabetes and related metabolic abnormalities using ob/ob and normal mice. Acute in vivo antagonistic potency of Ex(9–39) was confirmed in ob/ob mice by blockade of the insulin-releasing and anti-hyperglycaemic actions of intraperitoneal GLP-1. In longer term studies, ob/ob mice were given once daily injections of Ex(9–39) or vehicle for 11 days. Feeding activity, body weight, and both basal and glucose-stimulated insulin secretion were not significantly affected by chronic Ex(9–39) treatment. However, significantly elevated basal glucose concentrations and impaired glucose tolerance were evident at 11 days. These disturbances in glucose homeostasis were independent of changes of insulin sensitivity and reversed by discontinuation of the Ex(9–39) for 9 days. Similar treatment of normal mice did not affect any of the parameters measured. These findings illustrate the physiological extrapancreatic glucose-lowering actions of GLP-1 in ob/ob mice and suggest that the endogenous hormone plays a minor role in the metabolic abnormalities associated with obesity-related diabetes.
L M McShane, N Irwin, D O’Flynn, Z J Franklin, C M Hewage, and F P M O’Harte
Ablation of glucagon receptor signaling represents a potential treatment option for type 2 diabetes (T2DM). Additionally, activation of glucose-dependent insulinotropic polypeptide (GIP) receptor signaling also holds therapeutic promise for T2DM. Therefore, this study examined both independent and combined metabolic actions of desHis1Pro4Glu9(Lys12PAL)-glucagon (glucagon receptor antagonist) and d-Ala2GIP (GIP receptor agonist) in diet-induced obese mice. Glucagon receptor binding has been linked to alpha-helical structure and desHis1Pro4Glu9(Lys12PAL)-glucagon displayed enhanced alpha-helical content compared with native glucagon. In clonal pancreatic BRIN-BD11 beta-cells, desHis1Pro4Glu9(Lys12PAL)-glucagon was devoid of any insulinotropic or cAMP-generating actions, and did not impede d-Ala2GIP-mediated (P<0.01 to P<0.001) effects on insulin and cAMP production. Twice-daily injection of desHis1Pro4Glu9(Lys12PAL)-glucagon or d-Ala2GIP alone, and in combination, in high-fat-fed mice failed to affect body weight or energy intake. Circulating blood glucose levels were significantly (P<0.05 to P<0.01) decreased by all treatments regimens, with plasma and pancreatic insulin elevated (P<0.05 to P<0.001) in all mice receiving d-Ala2GIP. Interestingly, plasma glucagon concentrations were decreased (P<0.05) by sustained glucagon inhibition (day 28), but increased (P<0.05) by d-Ala2GIP therapy, with a combined treatment resulting in glucagon concentration similar to saline controls. All treatments improved (P<0.01) intraperitoneal and oral glucose tolerance, and peripheral insulin sensitivity. d-Ala2GIP-treated mice showed increased glucose-induced insulin secretion in response to intraperitoneal and oral glucose. Metabolic rate and ambulatory locomotor activity were increased (P<0.05 to P<0.001) in all desHis1Pro4Glu9(Lys12PAL)-glucagon-treated mice. These studies highlight the potential of glucagon receptor inhibition alone, and in combination with GIP receptor activation, for T2DM treatment.
J C Parker, K S Lavery, N Irwin, B D Green, B Greer, P Harriott, F P M O’Harte, V A Gault, and P R Flatt
Glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important enteroendocrine hormones that are rapidly degraded by an ubiquitous enzyme dipeptidyl peptidase IV to yield truncated metabolites GIP(3–42) and GLP-1(9–36)amide. In this study, we investigated the effects of sub-chronic exposure to these major circulating forms of GIP and GLP-1 on blood glucose control and endocrine pancreatic function in obese diabetic (ob/ob) mice. A once daily injection of either peptide for 14 days had no effect on body weight, food intake or pancreatic insulin content or islet morphology. GLP-1(9–36)amide also had no effect on plasma glucose homeostasis or insulin secretion. Mice receiving GIP(3–42) exhibited small but significant improvements in non-fasting plasma glucose, glucose tolerance and glycaemic response to feeding. Accordingly, plasma insulin responses were unchanged suggesting that the observed enhancement of insulin sensitivity was responsible for the improvement in glycaemic control. These data indicate that sub-chronic exposure to GIP and GLP-1 metabolites does not result in physiological impairment of insulin secretion or blood glucose control. GIP(3–42) might exert an overall beneficial effect by improving insulin sensitivity through extrapancreatic action.