Search Results
You are looking at 1 - 1 of 1 items for
- Author: N Popnikolov x
- Refine by access: All content x
Search for other papers by N Popnikolov in
Google Scholar
PubMed
Search for other papers by J Yang in
Google Scholar
PubMed
Search for other papers by A Liu in
Google Scholar
PubMed
Search for other papers by R Guzman in
Google Scholar
PubMed
Search for other papers by S Nandi in
Google Scholar
PubMed
The proliferation of normal human breast epithelial cells in women is highest during the first trimester of pregnancy. In an attempt to analyze this hormonal environment in a model system, the effect of host mouse pregnancy and the administration of human chorionic gonadotropin (hCG) were assessed in normal human breast epithelial cells transplanted into athymic nude mice. Human breast epithelial cells, dissociated from reduction mammoplasty specimens and embedded inside the extracellular matrices comprised of collagen gel and Matrigel, were transplanted into nude mice. Proliferation was measured in vivo by BrdU labeling followed by immunostaining of sections from recovered gels in response to an altered hormonal environment of the host animal. The host animal was mated to undergo pregnancy and the complex hormonal environment of the host animal pregnancy stimulated growth of transplanted human cells. This effect increased with progression of pregnancy and reached the maximum during late pregnancy prior to parturition. In order to determine whether additional stimulation could be achieved, the transplanted human cells were exposed to a second cycle of host mouse pregnancy by immediately mating the animal after parturition. This additional exposure of host mouse pregnancy did not result in further increase of proliferation. The effect of hCG administration on transplanted human cells was also tested, since hCG level is highest during the first trimester of human pregnancy and coincides with the maximal breast cell proliferation. Administration of hCG alone stimulated proliferation of human cells in a dose-dependent manner, and could further enhance stimulation achieved with estrogen. The host mouse mammary gland also responded to hCG treatment resulting in increased branching and lobulo-alveolar development. However, the hCG effect on both human and mouse cells was dependent on intact ovary since the stimulation did not occur in ovariectomized animals. Although hCG receptor transcripts were detected in human breast epithelial cells, raising the possibility of a direct mitogenic action, the hCG effect observed in this study may have been mediated via the ovary by increased secretion of ovarian steroids. In summary, using our in vivo nude mice system, the proliferation of normal human breast epithelial cells could be stimulated by host mouse pregnancy and by administration of hCG.