Search Results
You are looking at 1 - 4 of 4 items for
- Author: N. G. N. Milton x
- Refine by access: All content x
Search for other papers by E. W. Hillhouse in
Google Scholar
PubMed
Search for other papers by N. G. N. Milton in
Google Scholar
PubMed
ABSTRACT
Previous studies using the isolated rat hypothalamus in vitro have shown that both acetylcholine and 5-hydroxytryptamine (5-HT) stimulate the secretion of bioactive corticotrophin-releasing factor (CRF). However, the CRF complex consists of a number of bioactive substances, and in this study we examined the effect of acetylcholine and 5-HT on the release of immunoreactive (ir)-CRF-41 and ir-arginine vasopressin (AVP) in vitro. Acetylcholine caused a dose-dependent (10 pmol–10 nmol/l) release of both neuropeptides, and the effect was partially antagonized by both atropine and hexamethonium. Nicotine (0·1–10 μmol/l) also stimulated the release of both peptides, whereas bethanacol had no effect on AVP release, but had a variable action on CRF-41 release. 5-HT caused a dose-dependent (10 pmol–1 nmol/l) stimulation of CRF-41 release without any effect on AVP release, and this effect was antagonized by cyproheptadine, suggesting the participation of specific 5-HT receptors.
Journal of Endocrinology (1989) 122, 713–718
Search for other papers by E. W. Hillhouse in
Google Scholar
PubMed
Search for other papers by N. G. N. Milton in
Google Scholar
PubMed
ABSTRACT
Much controversy exists concerning the role of catecholamines in the control of ACTH secretion. In this study, noradrenaline (0·1 nmol–0·1 μmol/l) stimulated the release of both immunoreactive corticotrophin-releasing factor-41 (ir-CRF-41) and ir-arginine vasopressin (ir-AVP) from the rat hypothalamus in vitro. The stimulatory effect of noradrenaline on CRF-41 release was blocked by propranolol, whilst that on AVP release was blocked by phentolamine. γ-Aminobutyric acid (GABA; 10 nmol/l) inhibited the acetylcholine-induced release of both AVP and CRF-41 in vitro, and the effect was blocked by picrotoxin (0·1 μmol/l). Neither substance had any effect on the basal secretion of either neuropeptide. The results indicate that noradrenaline stimulates and GABA inhibits the release of both peptides from the rat hypothalamus in vitro.
Journal of Endocrinology (1989) 122, 719–723
Search for other papers by N. G. N. Milton in
Google Scholar
PubMed
Search for other papers by E. W. Hillhouse in
Google Scholar
PubMed
Search for other papers by A. S. Milton in
Google Scholar
PubMed
ABSTRACT
The pyrogenic interferon inducer polyinosinic: polycytidylic acid (Poly I: C) was shown to stimulate rises in both prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) in conscious rabbits in vivo. Poly I:C (2·5 μg/kg) stimulated a fivefold rise in circulating immunoreactive (ir) PGE2, with a lag phase of 60 min, which was sustained during the subsequent 4-h period of observation. Poly I:C also stimulated a 2·5-fold rise in circulating irPGF2α with a lag phase of 90 min, which was followed by a return to basal levels after 5 h. The rises in circulating irPGE2 and irPGF2α stimulated by Poly I:C were prevented by pretreatment with the non-steroidal anti-inflammatory drug ketoprofen. Both the irPGE2 and irPGF2α responses to Poly I:C (2·5 μg/kg, i.v.) were antagonized by the corticotrophin-releasing factor-41 (CRF-41) receptor antagonist (α-helical CRF (9–41), 25 μg/kg, i.v.) administered 5 min prior to the pyrogen. Peripheral immunoneutralization using an anti-CRF-41 monoclonal antibody (KCHMB001, 2·5 mg/kg, i.v.) administered 5 min prior to the pyrogen, also inhibited both the PGE2 and PGF2α responses to Poly I:C (2·5 μg/kg, i.v.). However, control mouse IgG also inhibited the PGE2 response. In conclusion, these results suggest a modulatory role for endogenous peripheral CRF-41 in the circulating prostaglandin responses to the pyrogen Poly I: C and this effect may be responsible for the antipyretic actions of peripherally administered CRF-41 antagonists and antibodies.
Journal of Endocrinology (1993) 138, 7–11
Search for other papers by N. G. N. Milton in
Google Scholar
PubMed
Search for other papers by E. W. Hillhouse in
Google Scholar
PubMed
Search for other papers by A. S. Milton in
Google Scholar
PubMed
ABSTRACT
The pyrogenic interferon inducer polyinosinic: polycytidylic acid (Poly I: C) was shown to activate the rabbit hypothalamo-pituitary-adrenocortical (HPA) axis in vivo. The immunoreactive cortisol response to Poly I:C (2·5 μg/kg) was shown to have a corticotrophin-releasing factor-41 (CRF-41)-dependent component which was abolished by peripheral immunoneutralization using an anti-CRF41 monoclonal antibody (KCHMB001; 2·5 mg/kg i.v.). Peripheral administration of the arginine vasopressin (AVP) V1 receptor antagonist ([deaminoPen1, O-Me-Tyr2, Arg8]-vasopressin; 225 nmol/kg i.v.) had no effect on the response of immunoreactive cortisol to Poly I:C, suggesting that AVP was not involved in activation of the HPA axis. Poly I: C increased both body temperature and circulating immunoreactive prostaglandin E2; these responses were abolished by the cyclo-oxygenase inhibitor ketoprofen (3 mg/kg s.c.). The immunoreactive cortisol response to Poly I: C, however, remained after the administration of ketoprofen, indicating a prostaglandin (PG)-independent component. The immunoreactive cortisol levels in control, saline vehicle-treated, animals were reduced by both the CRF-41 receptor antagonist (α-helical CRF (9–41); 6·25 mmol/kg i.v.) and ketoprofen (3 mg/kg s.c.) indicating that this basal state is dependent on both CRF-41 and PGs.
Journal of Endocrinology (1992) 135, 69–75