Search Results
You are looking at 1 - 2 of 2 items for
- Author: Niklas Andersson x
- Refine by access: All content x
Search for other papers by Johan Svensson in
Google Scholar
PubMed
Search for other papers by Jon Kindblom in
Google Scholar
PubMed
Search for other papers by Ruijin Shao in
Google Scholar
PubMed
Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
Search for other papers by Marie K Lagerquist in
Google Scholar
PubMed
Search for other papers by Niklas Andersson in
Google Scholar
PubMed
Search for other papers by Klara Sjögren in
Google Scholar
PubMed
Search for other papers by Katrien Venken in
Google Scholar
PubMed
Search for other papers by Dirk Vanderschueren in
Google Scholar
PubMed
Search for other papers by John-Olov Jansson in
Google Scholar
PubMed
Search for other papers by Olle Isaksson in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1−/− mice) displayed an ∼80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe −19%, P<0.05; dorsolateral prostate (DLP) lobe −35%, P<0.01; ventral prostate (VP) lobe −47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (−34% and −30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1−/− mice than in ORX controls (−40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Niklas Andersson in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Emil Egecioglu in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Elin Löf in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Charlotte Swanson in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Klara Sjögren in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Marie K Lindberg in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Hans Carlsten in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research at the Sahlgrenska Academy, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
Department of Physiology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Department of Pharmacology, Göteborg University, Medicinaregatan 9, Box 434 SE-405 30 Göteborg, Sweden
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
It is generally believed that estrogens exert their bone sparing effects directly on the cells within the bone compartment. The aim of the present study was to investigate if central mechanisms might be involved in the bone sparing effect of estrogens. The dose–response of central (i.c.v) 17β-estradiol (E2) administration was compared with that of peripheral (s.c.) administration in ovariectomized (ovx) mice. The dose–response curves for central and peripheral E2 administration did not differ for any of the studied estrogen-responsive tissues, indicating that these effects were mainly peripheral. In addition, ovx mice were treated with E2 and/or the peripheral estrogen receptor antagonist ICI 182,780. ICI 182,780 attenuated most of the estrogenic response regarding uterus weight, retroperitoneal fat weight, cortical BMC and trabecular bone mineral content (P<0.05). These findings support the notion that the primary target tissue that mediates the effect of E2 on bone is peripheral and not central.