Search Results
You are looking at 1 - 3 of 3 items for
- Author: Olaf Jöhren x
- Refine by access: All content x
Search for other papers by Riccardo Dore in
Google Scholar
PubMed
Search for other papers by Luka Levata in
Google Scholar
PubMed
Search for other papers by Sogol Gachkar in
Google Scholar
PubMed
Search for other papers by Olaf Jöhren in
Google Scholar
PubMed
Search for other papers by Jens Mittag in
Google Scholar
PubMed
Search for other papers by Hendrik Lehnert in
Google Scholar
PubMed
Search for other papers by Carla Schulz in
Google Scholar
PubMed
Nesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions. With the application of direct calorimetry, we found that intracerebroventricular nesfatin-1 (25 pmol) treatment increased dry heat loss and that this effect was fully blocked by simultaneous administration of an equimolar dose of the melanocortin 3/4 receptor antagonist, SHU9119. Interestingly, the nesfatin-1-induced increase in dry heat loss was positively correlated with body weight loss. In addition, as assessed with thermal imaging, intracerebroventricular nesfatin-1 (100 pmol) increased interscapular brown adipose tissue (iBAT) as well as tail temperature, suggesting increased heat production in the iBAT and heat dissipation over the tail surface. Finally, nesfatin-1 upregulated pro-opiomelanocortin and melanocortin 3 receptor mRNA expression in the hypothalamus, accompanied by a significant increase in iodothyronine deiodinase 2 and by a nonsignificant increase in uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA in the iBAT. Overall, we clearly demonstrate that nesfatin-1 requires the activation of the central melanocortin system to increase iBAT thermogenesis and, in turn, overall energy expenditure.
Search for other papers by Helge Müller in
Google Scholar
PubMed
Search for other papers by Juliane Kröger in
Google Scholar
PubMed
Search for other papers by Olaf Jöhren in
Google Scholar
PubMed
Search for other papers by Silke Szymczak in
Google Scholar
PubMed
Search for other papers by Michael Bader in
Google Scholar
PubMed
Search for other papers by Peter Dominiak in
Google Scholar
PubMed
Search for other papers by Walter Raasch in
Google Scholar
PubMed
AT1 blockers attenuate hypothalamo-pituitary–adrenal (HPA) axis reactivity in hypertension independently of their potency to lower blood pressure. A reduced pituitary sensitivity to CRH and a downregulation of hypothalamic CRH expression have been suggested to influence HPA axis activity during chronic AT1 blockade. This study was aimed at confirming the role of central angiotensin II in regulating HPA reactivity by using the transgenic rat TGR(ASrAOGEN), a model featuring low levels of brain angiotensinogen. Different stress tests were performed to determine HPA reactivity in TGR(ASrAOGEN) and appropriate controls. In TGR(ASrAOGEN), blood pressure was diminished compared to controls. The corticosterone response to a CRH or ACTH challenge and a forced swim test was more distinct in TGR(ASrAOGEN) than it was in controls and occurred independently of a concurrent enhancement in ACTH. Using quantitative real-time PCR, we found increased mRNA levels of melanocortin 2 (Mc2r) and AT2 receptors (Agtr2) in the adrenals of TGR(ASrAOGEN), whereas mRNA levels of Crh, Pomc, and AT1 receptors (Agtr1) remained unchanged in hypothalami and pituitary glands. Since stress responses were increased rather than attenuated in TGR(ASrAOGEN), we conclude that the reduced HPA reactivity during AT1 blockade could not be mimicked in a specific transgenic rat model featuring a centrally inactivated renin–angiotensin–aldosterone system. The ACTH independency of the enhanced corticosterone release during CRH test and the enhanced corticosterone response to ACTH rather indicates an adrenal mechanism. The upregulation of adrenal MC2 and AT2 receptors seems to be involved in the stimulated facilitation of adrenal corticosterone release for effectuating the stimulated stress responses.
Search for other papers by Manjunath Ramanjaneya in
Google Scholar
PubMed
Search for other papers by Alex C Conner in
Google Scholar
PubMed
Search for other papers by Jing Chen in
Google Scholar
PubMed
Search for other papers by Prashanth Kumar in
Google Scholar
PubMed
Search for other papers by James E P Brown in
Google Scholar
PubMed
Search for other papers by Olaf Jöhren in
Google Scholar
PubMed
Search for other papers by Hendrik Lehnert in
Google Scholar
PubMed
Search for other papers by Peter R Stanfield in
Google Scholar
PubMed
Search for other papers by Harpal S Randeva in
Google Scholar
PubMed
Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.