Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Omar Pedro Pignataro x
Clear All Modify Search
Free access

Romina Maria Pagotto, Elba Nora Pereyra, Casandra Monzón, Carolina Mondillo and Omar Pedro Pignataro

Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.

Free access

Giselle Adriana Abruzzese, Maria Florencia Heber, Silvana Rocio Ferreira, Leandro Martin Velez, Roxana Reynoso, Omar Pedro Pignataro and Alicia Beatriz Motta

Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis.

Restricted access

Maria F Heber, Silvana R Ferreira, Giselle Adriana Abruzzese, Trinidad Raices, Omar Pedro Pignataro, Margarita Vega and Alicia B Motta

Insulin resistance is the decreased ability of insulin to mediate metabolic actions. In the ovary, insulin controls ovulation and oocyte quality. Alterations in ovarian insulin signaling pathway could compromise ovarian physiology. Here, we aimed to investigate the effects of fetal programming on ovarian insulin signaling and evaluate the effect of metformin treatment. Pregnant rats were hyperandrogenized with testosterone and female offspring born to those dams were employed; at adulthood, prenatally hyperandrogenized (PH) offspring presented two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Half of each group was orally treated with metformin. Metformin treatment improved the estrous cyclicity in both PH groups. Both PH groups showed low mRNA levels of IR, IRS1 and Glut4. IRS2 was decreased only in PHanov. Metformin upregulated the mRNA levels of some of the mediators studied. Protein expression of IR, IRS1/2 and GLUT4 was decreased in both PH groups. In PHiov, metformin restored the expression of all the mediators, whereas, in PHanov, metformin restored only that of IR and IRS1/2. IRS1 phosphorylation was measured in tyrosine residues, which activates the pathway, and in serine residues, which impairs insulin action. PHiov presented high IRS1 phosphorylation on tyrosine and serine residues, whereas PHanov showed high serine phosphorylation and low tyrosine phosphorylation. Metformin treatment lowered serine phosphorylation only in PHanov rats. Our results suggest that PHanov rats have a defective insulin action, partially restored with metformin. PHiov rats had less severe alterations, and metformin treatment was more effective in this phenotype.

Free access

Adriana María Belén Abiuso, Esperanza Berensztein, Romina María Pagotto, Elba Nora Pereyra, Vanina Medina, Diego José Martinel Lamas, Marcos Besio Moreno, Omar Pedro Pignataro and Carolina Mondillo

The histamine H4 receptor (HRH4), discovered only 13 years ago, is considered a promising drug target for allergy, inflammation, autoimmune disorders and cancer, as reflected by a steadily growing number of scientific publications and patent applications. Although the presence of HRH4 has been evidenced in the testis, its specific localization or its role has not been established. Herein, we sought to identify the possible involvement of HRH4 in the regulation of Leydig cell function. We first evaluated its expression in MA-10 Leydig tumor cells and then assessed the effects of two HRH4 agonists on steroidogenesis and proliferation. We found that HRH4 is functionally expressed in MA-10 cells, and that its activation leads to the inhibition of LH/human chorionic gonadotropin-induced cAMP production and StAR protein expression. Furthermore, we observed decreased cell proliferation after a 24-h HRH4 agonist treatment. We then detected for the sites of HRH4 expression in the normal rat testis, and detected HRH4 immunostaining in the Leydig cells of rats aged 7–240 days, while 21-day-old rats also presented HRH4 expression in male gametes. Finally, we evaluated the effect of HRH4 activation on the proliferation of normal progenitor and immature rat Leydig cell culture, and both proved to be susceptible to the anti-proliferative effect of HRH4 agonists. Given the importance of histamine (2-(1H-imidazol-4-yl)ethanamine) in human (patho)physiology, continued efforts are directed at elucidating the emerging properties of HRH4 and its ligands. This study reveals new sites of HRH4 expression, and should be considered in the design of selective HRH4 agonists for therapeutic purposes.