Search Results

You are looking at 1 - 3 of 3 items for

  • Author: P Faure x
  • Refine by access: All content x
Clear All Modify Search
L Oziol
Search for other papers by L Oziol in
Google Scholar
PubMed
Close
,
P Faure
Search for other papers by P Faure in
Google Scholar
PubMed
Close
,
N Bertrand
Search for other papers by N Bertrand in
Google Scholar
PubMed
Close
, and
P Chomard
Search for other papers by P Chomard in
Google Scholar
PubMed
Close

Oxidized low density lipoproteins (LDL) are highly suspected of initiating the atherosclerosis process. Thyroid hormones and structural analogues have been reported to protect LDL from lipid peroxidation induced by Cu2+ or the free radical generator 2,2'-azobis-'2-amidinopropane' dihydrochloride in vitro. We have examined the effects of thyroid compounds on macrophage-induced LDL oxidation. Human monocyte-derived macrophages (differentiated U937 cells) were incubated for 24 h with LDL and different concentrations (0-20 microM) of 3,5,3'-triiodo-l -thyronine (T3), 3,5,3',5'-tetraiodo-L-thyronine (T4), 3,3',5'-tri-iodo-l -thyronine (rT3), the T3 acetic derivative (3,5,3'-tri-iodothyroacetic acid; TA3) or L-thyronine (T0) (experiment 1). Cells were also preincubated for 24 h with 1 or 10 microM of the compounds, washed twice, then incubated again for 24 h with LDL (experiment 2). Oxidation was evaluated by measurement of thiobarbituric acid-reactive substances (TBARS) and cell viability by lactate deshydrogenase release. In experiment 1, T0 had no effect, whereas the other compounds decreased LDL TBARS production, but T3 and TA3 were less active than T4 and rT3 (IC50: 11.0 +/- 2.6 and 8.1 +/- 0.8 vs 1.4 +/- 0.5 and 0.9 +/- 0.3 microM respectively). In experiment 2, the compounds at 1 microM had no effect; at 10 microM, T3 and rT3 slightly reduced LDL TBARS production, whereas TA3 and T4 inhibited it by about 50% and 70% respectively. TBARS released by the cells were also highly decreased by T3, T4, rT3 and TA3 in experiment 1, but only by T3 (30%) and T4 (70%) in experiment 2. Cell viability was not affected by the compounds except slightly by TA3 at 10 microM. The data suggested that the physico-chemical antioxidant capacity of thyroid compounds was modulated by their action on the intracellular redox systems of macrophage. Overall cellular effects of T3 led to a reduction of its antioxidant capacity whereas those of T4 increased it. Thus T4 might protect LDL against cellular oxidation in vivo more than T3.

Free access
L Oziol
Search for other papers by L Oziol in
Google Scholar
PubMed
Close
,
P Faure
Search for other papers by P Faure in
Google Scholar
PubMed
Close
,
C Vergely
Search for other papers by C Vergely in
Google Scholar
PubMed
Close
,
L Rochette
Search for other papers by L Rochette in
Google Scholar
PubMed
Close
,
Y Artur
Search for other papers by Y Artur in
Google Scholar
PubMed
Close
, and
P Chomard
Search for other papers by P Chomard in
Google Scholar
PubMed
Close

It was reported that thyroid hormones decreased Cu(2+)-induced low-density lipoprotein (LDL) oxidation in vitro. Here, we investigated free radical scavenging capacities of thyroid hormones (3,5,3'-tri-iodo-L-thyronine (T(3)), thyroxine (T(4)) and 3,3',5'-tri-iodo-L-thyronine (rT(3))) and structural analogues (L-thyronine (T(0)), 3,5,3'tri-iodothyroacetic acid (TA(3)) and 3,5,3',5'-tetra-iodothyroacetic acid (TA(4))), using three different models of free radical generation. T(0), T(3) and TA(3) slowed down production of conjugated diene and thiobarbituric acid-reactive substances during LDL oxidation by 2,2'-azobis-[2-amidinopropane] (water-soluble), whereas rT(3), T(4) and TA(4) had practically no effect. In this system, T(0) was the more active compound. Using a 1,1-diphenyl-2-picrylhydrazyl (lipid-soluble) test, all compounds also revealed free radical scavenging capacities, but rT(3), T(4) and TA(4) were more active than T(0), T(3) and TA(3). T(3) was able to scavenge superoxide anion and hydroxyl radicals generated in an aqueous phase by a xanthine-xanthine oxidase system, as measured by electron paramagnetic resonance spectroscopy. It may be concluded that: (1) thyroid hormones and analogues with a 4'-hydroxy diphenylether structure have free radical scavenging capacities, (2) this property is influenced by the number of iodines on the phenolic ring, and (3) thyroid hormone scavenging capacity should not be the only mechanism explaining their protective effect on Cu(2+)-induced LDL oxidation. The physiological significance of the findings is discussed.

Free access
P-M Bourlon
Search for other papers by P-M Bourlon in
Google Scholar
PubMed
Close
,
A Faure-Dussert
Search for other papers by A Faure-Dussert in
Google Scholar
PubMed
Close
,
B Billaudel
Search for other papers by B Billaudel in
Google Scholar
PubMed
Close
,
B Ch J Sutter
Search for other papers by B Ch J Sutter in
Google Scholar
PubMed
Close
,
G Tramu
Search for other papers by G Tramu in
Google Scholar
PubMed
Close
, and
M Thomasset
Search for other papers by M Thomasset in
Google Scholar
PubMed
Close

Abstract

The pancreatic B cell is equipped with specific receptors for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and contains vitamin D-dependent calcium binding proteins (calbindin-D). Insulin secretion is impaired by vitamin D deficiency and is restored by 1,25-(OH)2D3 (concomitantly with an improved calcium handling within B cells) but the effect of 1,25-(OH)2D3 on the pancreatic B cell via calbindin-D is unclear. Therefore we examined the relationship between calbindin-D28K or calbindin-D9K and the activity of the endocrine pancreas in normal (N), four week vitamin D-deficient (−D) and one week 1,25-(OH)2D3-replete (+D) rats. Calbindin-D9K was not found in the pancreas, neither in the islets nor in the exocrine part, of any of the groups of rats (N, −D, or +D). Surprisingly, total islet calbindin-D28K content was increased by vitamin D deficiency and partly restored by 1,25-(OH)2D3. Calbindin-D28K immunostaining was observed only on A and B cells in the endocrine part of the pancreas, the greatest staining being found in A cells. This difference in staining density was increased by vitamin D deficiency and decreased by 1,25-(OH)2D3 treatment. In vitro, 1,25-(OH)2D3 also produced a negative influence on calbindin-D28K staining in A cells, as demonstrated using pieces of pancreas incubated with the steroid for 2 h. No significant influence on labeling intensity of B cell calbindin-D28K could be shown. Plasma insulin and islet insulin release in response to 10 mm arginine stimulation were decreased in −D rats and enhanced in +D rats towards N values. In contrast, plasma glucagon and the amount of glucagon secretion, stimulated in vitro by 10 mm arginine or by low (1·7 mm) glucose concentration, was increased in −D rats and attenuated by 1,25-(OH)2D3.

Thus there appears to be no relationship between the steady state level of B cell calbindin-D28K and the regulation of insulin secretion by 1,25-(OH)2D3 in vitamin D-deficient rats. However there is a correlation between A cell calbindin-D28K and glucagon secretion, which are both negatively regulated by 1,25-(OH)2D3. The predominance of calbindin-D28K in A cells raises the question as to how A and B cells interact and the role of calbindin-D28K in calcium handling.

Journal of Endocrinology (1996) 148, 223–232

Restricted access