Search Results
You are looking at 1 - 2 of 2 items for
- Author: P-J Shen x
- Refine by access: All content x
Search for other papers by P J Shen in
Google Scholar
PubMed
Search for other papers by A I Smith in
Google Scholar
PubMed
Search for other papers by R G Evans in
Google Scholar
PubMed
Search for other papers by I J Clarke in
Google Scholar
PubMed
Abstract
The negative feedback regulation by ovarian steroids of luteinizing hormone secretion may be partially mediated by a hypothalamic endogenous opioid mechanism. This could be affected by ovarian steroid-regulated changes in hypothalamic opioid receptor binding mechanisms. In this report we show that in the presence of blocking concentrations of site-selective opioid analogues, [3H]diprenorphin homogeneously labelled μ, δ or κ receptor subtypes respectively. Using this receptor binding model, we characterized each opioid receptor subtype in the hypothalamic preoptic area and medio-basal hypothalamus of ovariectomized (OVX) and OVX plus progesterone- or oestradiol-17β (OE2)-treated ewes. In the preoptic area, progesterone treatment did not influence the affinity or capacity of δ or κ receptor binding sites, but significantly reduced μ receptor subtype content (20% less than control) with no statistically significant change in affinity. There was no effect of OE2 on either the affinity or capacity of each opioid receptor subtype in this area. In the mediobasal hypothalamus, progesterone treatment significantly decreased δ subtype receptor affinity (22 ± 11 nm vs control 7 ± 2 nm) and increased binding capacity (78 ± 9 fmol/mg protein vs control 37 ± 16 fmol/mg protein). OE2 treatment had a similar, though more profound effect on affinity (51 ± 17 nm) and binding capacity (139 ± 26 fmol/mg protein) at the δ receptor binding site. There were no significant changes in the affinity or capacity of μ or κ binding sites in the medio-basal hypothalamus. These results indicate that steroid hormones modulate hypothalamic opioid receptors in the OVX ewe in a receptor subtype- and region-dependent manner. The precise role of these steroid-induced changes in opioid receptor characteristics remains to be determined.
Journal of Endocrinology (1995) 145, 559–567
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by P Fu in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by P-J Shen in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by C-X Zhao in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by D J Scott in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by C S Samuel in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by J D Wade in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by G W Tregear in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by R A D Bathgate in
Google Scholar
PubMed
Department of Biochemistry and Molecular Biology,
Department of Anatomy and Cell Biology, The University of Melbourne, Victoria 3010, Australia
Search for other papers by A L Gundlach in
Google Scholar
PubMed
Leucine-rich repeat-containing G-protein-coupled receptor 8 (LGR8, or RXFP2) is a member of the type C leucine-rich repeat-containing G protein-coupled receptor family, and its endogenous ligand is insulin-like peptide-3 (INSL3). Although LGR8 expression has been demonstrated in various human tissues, including testis, ovary, brain and kidney, the precise roles of this receptor in many of these tissues are unknown. In an effort to better understand INSL3–LGR8 systems in the rat, we cloned the full-length Lgr8 cDNA and investigated the presence and cellular localization of Lgr8 mRNA expression in adult and developing rat kidney. On the basis of these findings, we investigated the presence and distribution of renal 125I-labelled human INSL3-binding sites and the nature of INSL3–LGR8 signalling in cultured renal cells. Thus, using in situ hybridization histochemistry, cells expressing Lgr8 mRNA were observed in glomeruli of renal cortex from adult rats and were tentatively identified as mesangial cells. Quantitative, real-time PCR analysis of the developmental profile of Lgr8 mRNA expression in kidney revealed highest relative levels at late stage gestation (embryonic day 18), with a sharp decrease after birth and lowest levels in the adult. During development, silver grains associated with Lgr8 mRNA hybridization were observed overlying putative mesangial cells in mature glomeruli, with little or no signal associated with less-mature glomeruli. In adult and developing kidney, specific 125I-INSL3-binding sites were associated with glomeruli throughout the renal cortex. In primary cultures of glomerular cells, synthetic human INSL3 specifically and dose-dependently inhibited cell proliferation over a 48 h period, further suggesting the presence of functional LGR8 (receptors) on these cells (mesangial and others). These findings suggest INSL3–LGR8 signalling may be involved in the genesis and/or developmental maturation of renal glomeruli and possibly in regulating mesangial cell density in adult rat kidney.