Search Results

You are looking at 1 - 2 of 2 items for

  • Author: PA Kelly x
  • Refine by Access: All content x
Clear All Modify Search
Free access

IG Camarillo, G Thordarson, JG Moffat, KM Van Horn, N Binart, PA Kelly, and F Talamantes

The importance of prolactin (PRL) in regulating growth and differentiation of the mammary gland is well known. However, it is not well established whether PRL acts solely on the mammary epithelia or if it can also directly affect the mammary stroma. To determine where PRL could exert its effects within the mammary gland, we investigated the levels of expression and the localization of the PRL receptor (PRLR) in the epithelia and stroma of the rat mammary gland at different physiological stages. For these studies, we isolated parenchymal-free 'cleared' fat pads and intact mammary glands from virgin, 18-day-pregnant and 6-day-lactating rats. In addition, intact mammary tissues were enzymatically digested to obtain epithelial cells, free of stroma. The mammary tissues, intact gland, stroma and isolated epithelia, were then used for immunocytochemistry, protein extraction and isolation of total RNA. PRLR protein was detected in tissues using specific polyclonal antisera (PRLR-l) by immunocytochemistry and Western blot analysis. Messenger RNA for PRLR was measured by ribonuclease protection assay. Immunocytochemistry and Western blots with the PRLR-1 antisera detected PRLR in wild-type rat and mouse tissues, whereas the receptor protein was absent in tissues from PRLR gene-deficient mice. PRLR was found to be present both in the epithelia and stroma of mammary glands from virgin, pregnant and lactating rats, as determined by immunocytochemistry and Western blotting. Western blots revealed the predominance of three bands migrating at 88, 90 and 92 kDa in each of the rat mammary samples. These represent the long form of the PRLR. During pregnancy and lactation, PRLR protein increased in the epithelial compartment of the mammary gland but did not change within the stromal compartment at any physiological stage examined. We also found PRLR mRNA in both the epithelia and stroma of the mammary gland. Again, the stroma contained lower levels of PRLR mRNA compared with the epithelia at all physiological stages examined. Also, the PRLR mRNA levels within the stroma did not change significantly during pregnancy or lactation, whereas PRLR mRNA within the epithelia increased twofold during pregnancy and fourfold during lactation when compared with virgin rats. We conclude from this study that PRLR is expressed both in the stromal and epithelial compartment of the mammary gland. This finding suggests PRL may have a direct affect on the mammary stroma and by that route affect mammary gland development.

Free access

Gonzalez-Juanatey JR, R Pineiro, MJ Iglesias, O Gualillo, PA Kelly, C Dieguez, and F Lago

The use of GH to treat heart failure has received considerable attention in recent years. Although the mechanisms of its beneficial effects are unknown, it has been implicated in the regulation of apoptosis in several cell types, and cardiomyocyte apoptosis is known to occur in heart failure. We therefore decided to investigate whether GH protects cardiomyocytes from apoptosis. Preliminary experiments confirmed the expression of the GH receptor (GHR) gene in primary cultures of neonatal rat cardiomyocytes (PC), the specific binding of GH by HL-1 cardiomyocytes, and the GH-induced activation of GHR and its classical downstream effectors in the latter. That GH prevented the apoptosis of PC cells deprived of serum for 48 h was shown by DNA electrophoresis and by Hoechst staining assays in which GH reduced the percentage of cells undergoing apoptosis. Similarly, the TUNEL-evaluated pro-apoptotic effect of cytosine arabinoside (AraC) on HL-1 cells was almost totally prevented by pre-treatment with GH. Fluorescence-activated cell sorter (FACS) analysis showed apoptosis in 9.7% of HL-1 cells growing in normal medium, 21.1% of those treated with AraC and 13.9% of those treated with AraC+GH, and that GH increased the percentage of AraC-treated cells in the S/G(2)/M phase from 36.9% to 52.8%. GH did not modify IGF-I mRNA levels or IGF-I secretion in HL-1 cells treated with AraC, and the protection afforded by GH against AraC-induced apoptosis in HL-1 cells was not affected by the presence of anti-IGF-I antibodies, but was largely abolished by the calcineurin-inhibiting combination cyclosporin+FK506. GH also reduced AraC-induced phosphorylation of mitogen-activated protein kinase p38 (MAPK p38) in HL-1 cells. In summary, GH protects PC and HL-1 cells from apoptosis. This effect is not mediated by IGF-I and may involve MAPK p38 as well as calcineurin.