Search Results

You are looking at 1 - 2 of 2 items for

  • Author: PC Lisboa x
  • Refine by Access: All content x
Clear All Modify Search
Free access

TG Frankenfeld, VM Correa Da Costa, CC Nascimento-Saba, TM Ortiga-Carvalho, RM Santos, PC Lisboa, DP Carvalho, and D Rosenthal

Some authors have reported increased serum thyrotrophin (TSH) in animals chronically treated with lithium, suggesting that lithium might decrease pituitary thyroxine (T(4))-5'-deiodinase activity. On the other hand, the effect of lithium treatment on thyroidal T(4)-5'-deiodinase activity is also unknown. The present study was undertaken to evaluate the effects of lithium treatment on pituitary and thyroid T(4)-5'-deiodinase activity. Serum and pituitary TSH levels and thyroidal and pituitary T(4)-5'-deiodinase activities were determined in 3-month-old isogenic male Dutch-Miranda rats treated with lithium for 8 weeks. Chronic lithium treatment produced a slight increase in pituitary TSH content, but no change in serum TSH, and a significant increase in the thyroidal T(4)-5'-deiodinase activity. However, the pituitary T(4)-5'-deiodinase activity was unaffected by lithium administration. As far as we know, the present data show for the first time that chronic lithium treatment can increase the thyroxine to tri-iodothyronine conversion in the murine thyroid gland, be it directly or indirectly.

Free access

PC Lisboa, MC Passos, SC Dutra, RS Santos, IT Bonomo, AP Cabanelas, CC Pazos-Moura, and EG Moura

We have shown that protein restriction during lactation is associated with higher levels of serum and milk tri-iodothyronine (T(3)) with lower serum thyroxine (T(4)), suggesting an increased T(4) to T(3) conversion. To investigate this hypothesis, the activity of type 1 (D1) and/or type 2 (D2) iodothyronine deiodinases was evaluated on days 4, 12 and 21 of lactation in several tIssues of dams fed an 8% protein-restricted (PR) diet and controls fed a 23% protein diet. Serum TSH, T(3) and T(4) were measured by radioimmunoassay. Deiodinase activity was determined by the release of (125)I from (125)I-reverse T(3), under specific conditions for D1 or D2. PR dams had a transitory reduction in liver D1 activity (P<0.05) on day 12, and a small increase in thyroid D1 on day 12 followed by a small decrease on day 21. However, thyroid D2 activity was higher than controls (P<0.05) during the whole of the lactation period. Mammary gland D1 and D2 activities were lower on day 4 of lactation in PR dams (P<0.05), and D2 was higher on day 21 (P<0.05). Potentially, a lower conversion of T(3) to di-iodothyronine in the mammary glands of PR dams at the beginning of lactation may serve to provide more T(3) through the milk. Brown adipose tIssue (BAT) D2 activity was higher (P<0.05) in PR dams during all periods of lactation. PR dams showed higher skeletal muscle D1 activity only at the end of lactation, but no changes in D2 activity. Higher pituitary D1 and D2 activities in the PR group (P<0.05) at the end of lactation could have contributed to the lower serum TSH. These data suggest that the higher thyroid and BAT D2 activity during the whole of lactation and skeletal muscle D1 activity at the end of lactation may contribute to the higher serum T(3) in PR dams.