Search Results
You are looking at 1 - 1 of 1 items for
- Author: Paula Affonso Trotta x
- Refine by access: All content x
Search for other papers by Juliana Gastão Franco in
Google Scholar
PubMed
Search for other papers by Egberto Gaspar de Moura in
Google Scholar
PubMed
Search for other papers by Josely Correa Koury in
Google Scholar
PubMed
Search for other papers by Paula Affonso Trotta in
Google Scholar
PubMed
Search for other papers by Aline Cordeiro in
Google Scholar
PubMed
Search for other papers by Luana Lopes Souza in
Google Scholar
PubMed
Search for other papers by Norma Aparecida dos Santos Almeida in
Google Scholar
PubMed
Search for other papers by Natália da Silva Lima in
Google Scholar
PubMed
Search for other papers by Carmen Cabanelas Pazos-Moura in
Google Scholar
PubMed
Search for other papers by Patrícia Cristina Lisboa in
Google Scholar
PubMed
Department of Physiological Sciences, Department of Basic and Experimental Nutrition, Laboratory of Molecular Endocrinology, Department of Applied Nutrition, Roberto Alcântara Gomes Biology Institute
Search for other papers by Magna Cottini Fonseca Passos in
Google Scholar
PubMed
Resveratrol (Res) has been associated with protective effects against oxidative stress. This study evaluated the effect of Res over lipid peroxidation, antioxidant defense, hepatic sirtuin 1 (SIRT1), which up-regulates antioxidant enzymes, and copper/zinc superoxide dismutase (Cu/Zn SOD) in adult offspring whose mothers were protein restricted during lactation. Lactating Wistar rats were divided into control (C) group, which were fed a normal diet (23% protein), and low-protein and high-carbohydrate (LPHC) group, which were fed a diet containing 8% protein. After weaning (21 days), C and LPHC offspring were fed a normal diet until they were 180 days old. At the 160th day, animals were separated into four groups as follows: control, control+Res, LPHC, and LPHC+Res. Resveratrol was given for 20 days (30 mg/kg per day by gavage). LPHC animals showed a higher total antioxidant capacity (TAC) without change in lipid peroxidation and SIRT1 expression. The treatment with Res increased TAC only in the control group without effect on lipid peroxidation and SIRT1. LPHC animals treated with Res had lower lipid peroxidation and higher protein and mRNA expression of SIRT1 without any further increase in TAC. No significant difference in liver Cu/Zn SOD expression was observed among the groups. In conclusion, maternal protein restriction during lactation programs the offspring for a higher antioxidant capacity, and these animals seem to respond to Res treatment with a lower lipid peroxidation and higher hepatic SIRT1 expression that we did not observe in the Res-treated controls. It is probable that the protective effect can be attributed to Res activating SIRT1, only in the LPHC-programed group.