Search Results
You are looking at 1 - 2 of 2 items for
- Author: Paulo Matafome x
- Refine by access: All content x
Obesity Center, Faculty of Medicine, Biomedical Imaging and Life Sciences (IBILI), Department of Surgery A, Faculty of Medicine, Hospital de Santiago, EN 10, km 37, 2900‐722 Setubal, Portugal
Search for other papers by Hans Eickhoff in
Google Scholar
PubMed
Obesity Center, Faculty of Medicine, Biomedical Imaging and Life Sciences (IBILI), Department of Surgery A, Faculty of Medicine, Hospital de Santiago, EN 10, km 37, 2900‐722 Setubal, Portugal
Search for other papers by Teresa Louro in
Google Scholar
PubMed
Obesity Center, Faculty of Medicine, Biomedical Imaging and Life Sciences (IBILI), Department of Surgery A, Faculty of Medicine, Hospital de Santiago, EN 10, km 37, 2900‐722 Setubal, Portugal
Search for other papers by Paulo Matafome in
Google Scholar
PubMed
Obesity Center, Faculty of Medicine, Biomedical Imaging and Life Sciences (IBILI), Department of Surgery A, Faculty of Medicine, Hospital de Santiago, EN 10, km 37, 2900‐722 Setubal, Portugal
Search for other papers by Raquel Seiça in
Google Scholar
PubMed
Obesity Center, Faculty of Medicine, Biomedical Imaging and Life Sciences (IBILI), Department of Surgery A, Faculty of Medicine, Hospital de Santiago, EN 10, km 37, 2900‐722 Setubal, Portugal
Search for other papers by Francisco Castro e Sousa in
Google Scholar
PubMed
Excessive or inadequate glucagon secretion promoting hepatic gluconeogenesis and glycogenolysis is believed to contribute to hyperglycemia in patients with type 2 diabetes. Currently, metabolic surgery is an accepted treatment for obese patients with type 2 diabetes and has been shown to improve glycemic control in Goto-Kakizaki (GK) rats, a lean animal model for type 2 diabetes. However, the effects of surgery on glucagon secretion are not yet well established. In this study, we randomly assigned forty 12- to 14-week-old GK rats to four groups: control group (GKC), sham surgery (GKSS), sleeve gastrectomy (GKSG), and gastric bypass (GKGB). Ten age-matched Wistar rats served as a non-diabetic control group (WIC). Glycemic control was assessed before and 4 weeks after surgery. Fasting- and mixed-meal-induced plasma levels of insulin and glucagon were measured. Overall glycemic control improved in GKSG and GKGB rats. Fasting insulin levels in WIC rats were similar to those for GKC or GKSS rats. Fasting glucagon levels were highest in GKGB rats. Whereas WIC, GKC, and GKSS rats showed similar glucagon levels, without any significant meal-induced variation, a significant rise occurred in GKSG and GKGB rats, 30 min after a mixed meal, which was maintained at 60 min. Both GKSG and GKGB rats showed an elevated glucagon:insulin ratio at 60 min in comparison with all other groups. Surprisingly, the augmented post-procedural glucagon secretion was accompanied by an improved overall glucose metabolism in GKSG and GKGB rats. Understanding the role of glucagon in the pathophysiology of type 2 diabetes requires further research.
Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
Search for other papers by Marcos Divino Ferreira-Junior in
Google Scholar
PubMed
Search for other papers by Keilah Valéria Naves Cavalcante in
Google Scholar
PubMed
Search for other papers by Carlos Henrique Xavier in
Google Scholar
PubMed
Search for other papers by Emerielle Cristine Vanzela in
Google Scholar
PubMed
Search for other papers by Antonio Carlos Boschero in
Google Scholar
PubMed
University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
Polytechnic University of Coimbra, Coimbra Health School, H&T Research Center, Coimbra, Portugal
Search for other papers by Paulo Matafome in
Google Scholar
PubMed
Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
Search for other papers by Rodrigo Mello Gomes in
Google Scholar
PubMed
Ghrelin has effects that range from the maturation of the central nervous system to the regulation of energy balance. The production of ghrelin increases significantly during the first weeks of life. Studies have addressed the metabolic effects of liver-expressed antimicrobial peptide 2 (LEAP2) in inhibiting the effects evoked by ghrelin, mainly in glucose homeostasis, insulin resistance, and lipid metabolism. Despite the known roles of ghrelin in the postnatal development, little is known about the long-term metabolic influences of modulation with the endogenous expressed growth hormone secretagogue receptor (GHSR) inverse agonist LEAP2. This study aimed to evaluate the contribution of GHSR signalling during perinatal phases, to neurodevelopment and energy metabolism in young animals, under inverse antagonism by LEAP2[1–14]. For this, two experimental models were used: (i) LEAP2[1–14] injections in female rats during the pregnancy. (ii) Postnatal modulation of GHSR with LEAP2[1–14] or MK677. Perinatal GHSR modulation by LEAP2[1–14] impacts glucose homeostasis in a sex and phase-dependent manner, despite no effects on body weight gain or food intake. Interestingly, liver PEPCK expression was remarkably impacted by LEAP2 injections. The observed results suggests that perinatal LEAP2 exposure can modulate liver metabolism and systemic glucose homeostasis. In addition, these results, although not expressive, may just be the beginning of the metabolic imbalance that will occur in adulthood.