Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Ping Li x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Ying Wang, Xiao-Hui Wang, Deng-Xuan Fan, Yuan Zhang, Ming-Qing Li, Hai-Xia Wu, and Li-Ping Jin

Mammalian proprotein convertases (PCs) play an important role in folliculogenesis, as they proteolytically activate a variety of substrates such as the transforming growth factor beta (TGFβ) superfamily. PC subtilism/kexin 6 (PCSK6) is a member of the PC family and is ubiquitously expressed and implicated in many physiological and pathological processes. However, in human granulosa cells, the expression of the PC family members, their hormonal regulation, and the function of PCs are not clear. In this study, we found that PCSK6 is the most highly expressed PC family member in granulosa cells. LH increased PCSK6 mRNA level and PCSK6 played an anti-apoptosis function in KGN cells. Knockdown of PCSK6 not only increased the secretion of activin A and TGFβ2 but also decreased the secretion of follistatin, estrogen, and the mRNA levels of FSH receptor (FSHR) and P450AROM (CYP19A1). We also found that, in the KGN human granulosa cell line, TGFβ2 and activin A could promote the apoptosis of KGN cells and LH could regulate the follistatin level. These data indicate that PCSK6, which is regulated by LH, is highly expressed in human primary granulosa cells of pre-ovulatory follicles and plays important roles in regulating a series of downstream molecules and apoptosis of KGN cells.

Free access

Xiufen Chen, Bo Zhou, Jun Yan, Baoshan Xu, Ping Tai, Junxia Li, Shiming Peng, Meijia Zhang, and Guoliang Xia

It is proved that epidermal growth factor (EGF)-like factors mediate gonadotropin-induced rodent oocyte maturation via EGF receptor (EGFR). However, the detail kinetics and signal pathway between FSH and EGF/EGFR is not clear in large animals. In the present study, we investigated the roles of EGFR and protein kinase C (PKC) in FSH-induced porcine oocyte meiotic resumption. Porcine cumulus–oocyte complexes were cultured in NCSU37 medium containing 10% porcine follicular fluid and germinal vesicle breakdown (meiotic resumption) was detected after different treatments. The results showed that EGF-like factor amphiregulin (AR) and EGFR mRNA were expressed in porcine cumulus cells, but not oocytes. FSH significantly induced AR mRNA expression with maximum at 4 h and activated EGFR phosphorylation at 8 h. AR (1–100 ng/ml) dose-dependently induced meiosis resumption of porcine oocyte. The specific EGFR inhibitor, AG1478, but not AG43 (the inactive analog of AG1478), completely blocked FSH, EGF, and AR-induced oocyte meiotic resumption; the inhibitory effect of AG1478 on FSH action gradually decreased when the inhibitor was added at 6 h or later and disappeared when it was added at 11 h; EGF reversed the inhibitory effect on FSH when AG1478 was added within 6 h. FSH triggered porcine oocyte meiotic resumption (at 20 h) later than that of EGF and AR (at 18 h). All these results supported that endogenously produced EGFR activator(s), possibly AR (maximum at 4 h) and EGFR activation (began at 6 h and finished within 11 h), in cumulus cells is necessary for FSH-induced porcine oocyte meiotic resumption (began at 18 h). Furthermore, PKC activator PMA mimicked but PKC inhibitor chelerythrine chloride inhibited FSH action, and AG1478 also suppressed PMA-induced porcine oocyte meiotic resumption. These data together suggested that EGFR activation, by PKC signal pathway, participates in FSH-induced porcine oocyte meiotic resumption.

Free access

Zhen Yang, Chunming Guo, Ping Zhu, Wenjiao Li, Leslie Myatt, and Kang Sun

The amount of cortisol available to its receptors is increased by the pre-receptor enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) which converts cortisone to cortisol. We examined the molecular mechanisms of the feedback effect of cortisol on 11β-HSD1 mRNA expression in human amnion fibroblasts. Our data showed that cortisol-induced 11β-HSD1 mRNA expression dose dependently in amnion fibroblasts, which could be completely blocked both by the mRNA transcription inhibitor 5,6-dichlorobenzimidazole riboside and by the glucocorticoid receptor (GR) antagonist RU486, and partially blocked by global inhibition of CCAAT/enhancer-binding proteins (C/EBPs) with transfection of C/EBP-specific dominant-negative expression CMV500 plasmid (AC/EBP) into the cells. Likewise, the induction of the promoter activity by cortisol could also be completely blocked by RU486 and partially by AC/EBP transfection. Progressive 5′ deletion of the 11β-HSD1promoter located the region responsible for cortisol’s induction within −204 bp upstream to the transcription start site. Specific nucleotide mutations of the putative glucocorticoid responsive element or CCAAT in this promoter region attenuated the induction by cortisol. Moreover, chromatin immunoprecipitation assay and electrophoretic mobility shift assay showed that GR and C/EBPα but not C/EBPβ could bind this promoter region upon cortisol stimulation of amnion fibroblasts. In conclusion, we demonstrated that GR and C/EBPα were involved in cortisol-induced 11β-HSD1 mRNA expression via binding to 11β-HSD1 promoter in amnion fibroblasts, which may cast a feed-forward production of cortisol in the fetal membranes at the end of gestation.

Free access

Li Wang, Yufeng Zhao, Baosong Gui, Rongguo Fu, Feng Ma, Jun Yu, Ping Qu, Lei Dong, and Chen Chen

The role of free fatty acids (FFAs) in glucagon secretion has not been well established, and the involvement of FFA receptor GPR40 and its downstream signaling pathways in regulating glucagon secretion are rarely demonstrated. In this study, it was found that linoleic acid (LA) acutely stimulated glucagon secretion from primary cultured rat pancreatic islets. LA at 20 and 40 μmol/l dose-dependently increased glucagon secretion both at 3 mmol/l glucose and at 15 mmol/l glucose, although 15 mmol/l glucose reduced basal glucagon levels. LA induced an increase in cytoplasmic free calcium concentrations ([Ca2 +]i) in identified rat α-cells, which is reflected by increased Fluo-3 intensity under confocal microscopy recording. The increase in [Ca2 +]i was partly inhibited by removal of extracellular Ca2 + and eliminated overall by further exhaustion of intracellular Ca2 + stores using thapsigargin treatment, suggesting that both Ca2 + release and Ca2 + influx contributed to the LA-stimulated increase in [Ca2 +]i in α-cells. Double immunocytochemical stainings showed that GPR40 was expressed in glucagon-positive α-cells. LA-stimulated increase in [Ca2 +]i was blocked by inhibition of GPR40 expression in α-cells after GPR40-specific antisense treatment. The inhibition of phospholipase C activity by U73122 also blocked the increase in [Ca2 +]i by LA. It is concluded that LA activates GPR40 and phospholipase C (and downstream signaling pathways) to increase Ca2 + release and associated Ca2 + influx through Ca2 + channels, resulting in increase in [Ca2 +]i and glucagon secretion.

Free access

Chao Li, Bin Yang, Zhihao Xu, Eric Boivin, Mazzen Black, Wenlong Huang, Baoyou Xu, Ping Wu, Bo Zhang, Xian Li, Kunsong Chen, Yulian Wu, and Gina R Rayat

Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2. Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5–10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through the activation of ERK1/2- and PI3K/AKT-induced NRF2-mediated HO1 signaling pathway.

Free access

Shou-Si Lu, Yun-Li Yu, Hao-Jie Zhu, Xiao-Dong Liu, Li Liu, Yao-Wu Liu, Ping Wang, Lin Xie, and Guang-Ji Wang

Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and β-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as β-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.

Free access

Jun-Ping Wen, Chune Liu, Wen-Kai Bi, Ya-Ting Hu, Qingshi Chen, Huibing Huang, Ji-Xing Liang, Lian-Tao Li, Li-Xiang Lin, and Gang Chen

Adiponectin secreted from adipose tissues plays a role in the regulation of energy homeostasis, food intake, and reproduction in the hypothalamus. We have previously demonstrated that adiponectin significantly inhibited GNRH secretion from GT1-7 hypothalamic GNRH neuron cells. In this study, we further investigated the effect of adiponectin on hypothalamic KISS1 gene transcription, which is the upstream signal of GNRH. We found that globular adiponectin (gAd) or AICAR, an artificial AMPK activator, decreased KISS1 mRNA transcription and promoter activity. Conversely, inhibition of AMPK by Compound C or AMPKα1-SiRNA augmented KISS1 mRNA transcription and promoter activity. Additionally, gAd and AICAR decreased the translocation of specificity protein-1 (SP1) from cytoplasm to nucleus; however, Compound C and AMPKα1-siRNA played an inverse role. Our experiments in vivo demonstrated that the expression of Kiss1 mRNA was stimulated twofold in the Compound C-treated rats and decreased about 60–70% in gAd- or AICAR-treated rats compared with control group. The numbers of kisspeptin immunopositive neurons in the arcuate nucleus region of Sprague Dawley rats mimicked the same trend seen in Ki ss 1 mRNA levels in animal groups with different treatments. In conclusion, our results provide the first evidence that adiponectin reduces Kiss1 gene transcription in GT1-7 cells through activation of AMPK and subsequently decreased translocation of SP1.

Free access

Lei Li, Ping Ma, Chen Huang, Yongjun Liu, Ye Zhang, Chen Gao, Tianxia Xiao, Pei-Gen Ren, Brian A Zabel, and Jian V Zhang

The novel adipokine chemerin plays a role in the regulation of lipid and carbohydrate metabolism, and recent reports of elevated chemerin levels in polycystic ovarian syndrome and preeclampsia have pointed to an emerging role of chemerin in reproduction. We hypothesised that chemerin, like other adipokines, may function to regulate male gonadal steroidogenesis. In this study, we show that chemerin and its three receptors chemokine-like receptor 1 (CMKLR1), G-protein-coupled receptor 1 (GPR1) and chemokine (C-C motif) receptor-like 2 were expressed in male reproductive tracts, liver and white adipose tissue. CMKLR1 and GPR1 proteins were localised specifically in the Leydig cells of human and rat testes by immunohistochemistry. The expression of chemerin and its receptors in rat testes was developmentally regulated and highly expressed in Leydig cells. In vitro treatment with chemerin suppressed the human chorionic gonadotropin (hCG)-induced testosterone production from primary Leydig cells, which was accompanied by the inhibition of 3β-hydroxysteroid dehydrogenase gene and protein expression. The hCG-activated p44/42 MAPK (Erk1/2) pathway in Leydig cells was also inhibited by chemerin cotreatment. Together, these data suggest that chemerin is a novel regulator of male gonadal steroidogenesis.

Free access

Xin-gang Yao, Xin Xu, Gai-hong Wang, Min Lei, Ling-ling Quan, Yan-hua Cheng, Ping Wan, Jin-pei Zhou, Jing Chen, Li-hong Hu, and Xu Shen

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2 + channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.