Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Qin Yin x
  • Refine by access: All content x
Clear All Modify Search
Qin Yin Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China

Search for other papers by Qin Yin in
Google Scholar
PubMed
Close
,
Jun Gu Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China

Search for other papers by Jun Gu in
Google Scholar
PubMed
Close
,
Pengju Ren Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China

Search for other papers by Pengju Ren in
Google Scholar
PubMed
Close
,
Zhiqiang Guan Department of Dermatology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China

Search for other papers by Zhiqiang Guan in
Google Scholar
PubMed
Close
,
Yongxiang Wang Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, China
Department of Orthopedics, Northern Jiangsu People’s Hospital, Yangzhou, China

Search for other papers by Yongxiang Wang in
Google Scholar
PubMed
Close
,
Ruijun Bai Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China

Search for other papers by Ruijun Bai in
Google Scholar
PubMed
Close
, and
Yu Liu Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China

Search for other papers by Yu Liu in
Google Scholar
PubMed
Close

The role of this study was to evaluate the impact of gut microbiota depletion on the progression of osteoarthritis (OA) and osteoporosis (OP). We conducted an experimental mouse model of OA and OP over an 8-week period. The model involved destabilization of the medial meniscus and bilateral ovariectomy (OVX). To deplete the gut microbiota, we administered a course of antibiotics for 8 weeks. The severity of OA was assessed through micro-CT scanning, X-rays, and immunohistochemical staining. Microbiome analysis was performed using PCR of 16S DNA on fecal samples, and the levels of serum lipopolysaccharide, interleukin 6, tumor necrosis factor-α (TNF-α), osteocalcin, and estrogen were measured using enzyme-linked immunosorbent assay. We found that in comparison to the OVX+OA group, the OVX+OA+ABT group exhibited increased bone mineral density (P < 0.0001), bone volume fraction (P = 0.0051), and trabecular number (P = 0.0023) in the metaphyseal bone. Additionally, cartilage injury and levels of matrix metalloproteinase 13 were reduced in the OVX+OA+ABT group compared to the OVX+OA group. Moreover, the OVX+OA+ABT group demonstrated decreased relative abundance of Bacteroidetes, serum lipopolysaccharide (P = 0.0005), TNF-α (P < 0.0001), CTX-1 (P = 0.0002), and increased expression of bone formation markers. These findings were further supported by correlation network analyses. Depletion of gut microbiota was shown to protect against bone loss and cartilage degradation by modulating the composition of the gut microbiota in osteoporosis and osteoarthritis.

Restricted access